

PRELIMINARY HYDROGEOLOGICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION WALDEMAR DEVELOPMENT TOWNSHIP OF AMARANTH

Prepared For: Sarah Properties Ltd. Developments 2 Prince Edward Road Woodstock, Ontario N4V 1G7

Attention: Walter Broos

File No. 13-13-3198-6 April 16, 2015

© Terraprobe Inc.

 Greater Toronto
 Hamilton – Niagara

 11 Indell Lane
 903 Barton Street, Unit 22

 Brampton, Ontario L6T 3L1
 Stoney Creek, Ontario L8E

 (905) 796-2650 Fax: 796-2250
 (905) 643-7560 Fax: 643-7559

Terraprobe Inc.

Central Ontariot 22220 Bayview Drive, Unit 25trio L8EBarrie, Ontario L4N 4Y843-7559(705) 739-8355 Fax: 739-8369www.terraprobe.ca

Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

TABLE OF CONTENTS

1.0	INTR	ODUCTION1
	1.1	PROJECT DESCRIPTION
	1.2	SUMMARY OF WORK PROGRAM
2.0	SITE	AND PROJECT DESCRIPTION
	2.1	SITE LOCATION AND DESCRIPTION
	2.2	REGIONAL PHYSIOGRAPHY AND DRAINAGE
	2.3	SITE TOPOGRAPHY AND DRAINAGE
	2.4	CLIMATE
	2.5	REGIONAL GEOLOGY AND HYDROGEOLOGY
	2.6	GROUND WATER RESOURCES
3.0	RESU	JLTS OF SITE INVESTIGATION
	3.1	STRATIGRAPHIC CONDITIONS
		3.1.1 Sand and Gravel Deposits
		3.1.2 Glacial Till
	3.2	GROUND WATER LEVELS AND GRADIENTS
	3.3	GROUND WATER QUALITY
		3.3.1 Overburden
	3.4	DESCRIPTION OF MUNICIPAL WELLS
		3.4.1 Location and Water Use
		3.4.2 Hydrostratigraphic Conditions
		3.4.3 Water Levels and Capture Zones
		3.4.4 GUDI Status of Municipal Wells
	3.5	Hydraulic Conductivity Testing
4.0	DISC	USSIONS AND ANALYSIS
	4.1	SUMMARY OF HYDROGEOLOGICAL FEATURES OF THE SITE
	4.2	WATER SUPPLY
	4.3	PROPOSED SEWAGE SYSTEM DESIGN
		4.3.1 Impact on Local Private Wells
	4.4	IMPACT OF DEVELOPMENT ON WATER BALANCE
		4.4.1 Water Balance for Existing Conditions

	4.4.2	Water Balance for Post Development Conditions	13
	4.4.3	Proposed Mitigation Measures	13
5.0	SUMMMAR	RY AND CONCLUSIONS	15

FIGURES:

- Figure 1 Site Location Plan
- Figure 2 Regional Topography
- Figure 3 Proposed Site Plan
- Figure 4 Surficial Geology
- Figure 5 Regional Bedrock Geology
- Figure 6 MOE Well Records Locations
- Figure 7 Regional Cross Section AA'
- Figure 8 Regional Cross Section BB'
- Figure 9 Borehole and Test Pit Location Plan
- Figure 10 Site Cross Section CC'
- Figure 11 Site Cross Section DD'
- Figure 12 Ground Water Elevations
- Figure 13 Capture Zones for Municipal Wells

APPENDICES:

- Appendix A Borehole Logs and Grain Size Analysis
- Appendix B Test Pit Logs
- Appendix C Results from Hydraulic Conductivity Testing
- Appendix D Water Balance
- Appendix E Water Chemistry Certificate of Analysis
- Appendix F Ground Water Level Measurements

1.0 INTRODUCTION

1.1 Project Description

Terraprobe was retained by Sarah Properties Limited to conduct a hydrogeological investigation for the property identified at 1 Evans Ave and 9 Mill Street, Township Amaranth. The purpose of this investigation was to assess the hydrogeologic conditions with respect to development of the property with a residential subdivision.

The property is situated on the west side of the Village of Waldemar to the north of Highway 9, as seen in Figure 1. The property is an irregular parcel comprising a total of 35.02 ha. The site is currently open and rolling agricultural land, as seen in Figure 2. It is bounded to the north by a former railway alignment and current rail trail and to the east by existing estate residential development. The lands to the south and west are currently used for agricultural purposes.

It is proposed to develop the property with approximately 334 single family residential homes, as seen in Figure 3. The site will be serviced with internal municipal roadways, and municipal water supply. Sewage disposal will be accomplished through a communal sewage system with surface disposal.

The Village of Waldemar is currently serviced with a municipal water supply. The supply is obtained from a number of wells, completed within the Village area to the east of the Grand River. It is proposed to extend the current municipal system to provide piped water to the proposed development. There are currently discussions underway with Township of Amaranth to discuss the requirements for extending the system.

There are currently no communal sewage facilities in the Village of Waldemar. The proposed development will be serviced with a communal system with surface discharge. The proposed sewage system will likely comprise of the following components:

- An internal system of sewage collection through a combination of gravity sewers and pumping stations.
- A sewage treatment plant
- Surface discharge, ultimately to the Grand River.

The ownership of the sewage and water systems will be determined through future discussions with the Township of Amaranth. However, it is expected that the ownership of the sewage system may be through a condominium arrangement or by the Township of Amaranth, while the water system may be owned and operated by the Municipality.

1.2 Summary of Work Program

In summary, the work program included the following:

- Review of available geologic and topographic mapping for the site and surrounding area.
- Review of Ministry of Environmental (MOE) well records and the results of subsurface investigations which Terraprobe has conducted in the immediate area and the Village of Waldemar.
- Review of well head protection studies, hydrogeologic studies, source water studies and watershed studies by Grand River Conservation and the Township of Amaranth.
- Review and identification of known areas of natural significance in the vicinity of the site. This will include water bodies, drainage features, ESA's, ANSI's, and similar published information regarding natural features.
- A detailed site inspection to assess hydrogeologic features and surface drainage on the site and surrounding areas.
- A review of meteorological data to assess local climate and water balance
- A review of existing studies completed for the site and the adjacent sites, including previous subsurface investigations.
- The excavation of 10 test pits to depths of approximately 3 m.
- Drilling of 23 boreholes, to depths of 3 m to 12 m. Monitoring wells were installed at each of the boreholes to permit the monitoring of shallow ground water levels and ground water quality.
- Assessment of soil saturated hydraulic conductivity through grain size analysis and well response tests in the monitoring wells.

2.0 SITE AND PROJECT DESCRIPTION

2.1 Site Location and Description

The site occupies Part of Lots 1, 2, and 3, Concession 10, in the Township of Amaranth (County of Dufferin). It is located on the west side of the Village of Waldemar, and north of Highway 9 as shown on the Site Location Plan (Figure 1). The property is irregular parcel comprising a total of 35.02 ha. The site is currently open and rolling agricultural land (Figure 2). It is bounded to the north by a former railway alignment and current rail trail and to the east by existing estate residential development. The lands to the south and west are currently used for agricultural purposes.

2.2 Regional Physiography and Drainage

The site is situated near the boundary of two physiographic regions known as the Stratford Till Plain and the Hillsburg Sandhills (Figure 4). The Stratford Plain is a clay plain, generally consisting of a brown calcareous silty clay till. It is an area of ground moraine with several terminal moraines and is a product of the Huron Ice Lobe. The Hillsburgh Sandhills are characterized by rolling topography and sandy materials.

2.3 Site Topography and Drainage

The site generally slopes down to the north and east with a maximum topographic relief of approximately 28 m. The highest elevation of the property is near the south-western corner of the property. The lowest elevation of the property is situated at the north-east, near the rail trail. The site ground surface elevation is approximately 476 m to 458 m above mean sea level (Figure 2).

There are no permanent water courses found on the site. There is an existing storm water management pond and storm sewer located immediately downstream of the site. This was constructed as part of the existing community that is adjacent to the east side of the site. There are several drainage swales that feed the SWM basin, however these were dry at the time of the site inspection. The site is situated within the watershed of the Grand River. The main channel of the Grand River is found approximately 200 m to north and east of the site.

2.4 Climate

The site is situated in a climatic region known as the Dundalk Upland. The following climate data was obtained from Environment Canada publications. This information presents average climate data for the period of 1950-1980 (Brown et al., 1980):

-	Mean annual frost free period115 days
-	Mean annual precipitation
-	Annual water surplus
-	Mean annual evapotranspiration

It is noted that the climate conditions and water balance above are generalized only; however, this information is sufficient for a preliminary assessment of the current infiltration conditions at the site for development purposes.

2.5 Regional Geology and Hydrogeology

Based on published geological information for the general area, the near surface soil on the northern portion of the subject property generally consists of Pleistocene age sediments, predominantly Late Wisconsinan glaciofluvial deposits consisting of gravel and sand. The near surface soil on the southern portion of the subject property generally consists of Pleistocene age sediments, predominantly Late Wisconsinan Tavistock Till consisting of silt to clayey silt till. The surficial geology map of the area is shown on the accompanying Figure 4.

Beneath the sequence of overburden deposits is bedrock of the Guelph Formation. The Guelph Formation consists of brown or tan dolostone. The bedrock geology map of the area is provided as Figure 5. Geologic mapping indicates that the depth of overburden in the vicinity of the subject property is between 20 and 30 m.

A review of well records for the area indicates that most wells obtain water from the underling dolostone bedrock. The dolostone bedrock is a regional aquifer and forms the most important aquifer or water supply zone in the area.

2.6 Ground Water Resources

The records for the wells within approximately 1 km of the site were reviewed to determine the nature of local ground water resources and water use. Based on this review, the following is a summary of local well records.

Total number of wells
Number of wells completed in the bedrock40
Number of wells completed in the overburden
Depth Ranges:
Less than 15m4
15 m to 30 m12
Greater than 30 m
Water Use:
Domestic or Stock
Unknown1

The locations of these wells have been plotted on the accompanying Figures 6. Geologic cross-sections have been prepared using the well data, and is presented in Figure 7 and 8.

In summary, the information indicates that the majority of the local wells and greater than 15 m in depth and draw water from the underlying bedrock, and most are used for domestic supply purposes.

3.0 RESULTS OF SITE INVESTIGATION

Details of the subsurface conditions encountered at the site are summarized below, and are also presented on the accompanying borehole and test pit logs presented in Appendix A and B, respectively. The borehole and test pit locations at the subject property are shown on the accompanying Figure 9. It should be noted that the soil conditions are determined at the test pit and borehole locations only, and may vary at other locations.

3.1 Stratigraphic Conditions

The soil conditions at the site were investigated by means of test pits and borehole between January and April, 2014. The test pits provided information regarding shallow soil and ground water conditions to depths of up to 3 m. Boreholes provided additional information regarding subsurface conditions to depths up to 12 m. Two geologic cross-sections were prepared using the borehole data. These cross sections are presented in Figures 10 and 11.

A more complete description of each of the hydrostratigraphic units encountered in the vicinity of the site is provided in this section of the report. Select grain size distribution curves for the following stratigraphy can be seen in Appendix A.

In summary, the site is covered by a layer of topsoil, underlain by glacial till. In the majority of the property, the topsoil is underlain by clayey silt till. At a small area in the northern portion of the property, sand and gravel deposits were encountered directly beneath the topsoil layer and extend to the depth of investigation. Sand deposits also encountered at depth in two boreholes.

Bedrock was not encountered during the investigation.

3.1.1 Sand and Gravel Deposits

Sand to sand and gravel deposits were encountered across sections of the northern portion of the property (Test Pits 2, 3, 4, and 5), and Boreholes 1 and 7 at the south west section of the site. These sand deposits were encountered below the topsoil at the test pits (2, 3, 4, and 5) in the northern section of the site. Sand and gravel was encountered in BH1 at depths of 7.6 m to 10.7, within the till unit. A similar sand unit was encountered from 2.7 to 4.6 m in Borehole 7. These boreholes both terminated in the till deposits.

3.1.2 Glacial Till

Glacial soils were encountered in all boreholes throughout the site. The glacial till soils were encountered immediately underlying the topsoil and continued to the completed depths. The glacial till had a clayey silt to silty sand matrix with trace to some gravel. Cobbles were at occasionally present within the till.

3.2 Ground Water Levels and Gradients

The depth to ground water has been measured several times in the monitoring wells on the property. The water levels in the monitoring wells installed on the development site were measured on several occasions between February and October 24, 2014. The data is presented in Appendix F.

The groundwater elevations are plotted on the accompanying Figure 10, 11 and 12.

The water elevation date data generally indicates the following:

- It is interpreted that the groundwater flow directions are primarily the north and east towards the Grand River.
- The shallow ground water flow direction follows surface topography

The ground water level measurements were taken over a period of time to assess seasonal variations. As noted in Appendix F, there are seasonal variations in water levels.

Generally, the ground water levels rise during the wet periods of the year (spring and fall) and drop during the summer months.

Vertical gradients were measured at five locations. Generally, there is a downward gradient across the site, consistent with ground water recharge.

3.3 Ground Water Quality

3.3.1 Overburden

Ground water monitoring wells installed on the property were sampled during the 2014/15 investigation for three sampling events. All of these monitoring wells were completed in the overburden materials. Complete laboratory results are provided in Appendix E.

The nitrate concentrations in the monitoring wells installed on the subject property are summarized in the following table below:

	Units	MW1D	MW3S	MW6	MW8	MW9	MW11D	MW12	MW16
Total Ammonia-N	mg/L	0.12	<0.050	0.053	<0.050	<0.050	0.12	<0.050	<0.050
Total Kjeldahl Nitrogen (TKN)	mg/L	3.9	0.41	19	3.1	1.6	1.0	<2.0	12
Nitrite (N)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrate (N)	mg/L	<0.10	0.14	0.32	2.67	0.17	<0.10	1.61	3.42
Nitrate + Nitrite	mg/L	<0.10	0.14	0.32	2.67	0.17	<0.10	1.61	3.42

The nitrogen (Ammonia, TKN, Nitrite, Nitrite, and Nitrate) levels on the subject property are low. The average nitrate levels at the property are less than 1.1 mg/L at all locations, well below the Ontario Drinking Water Standard (ODWS) of 10 mg/L.

3.4 Description of Municipal Wells

3.4.1 Location and Water Use

The Village of Waldemar is currently serviced with three municipal wells. The status of the municipal wells has been the subject of several studies conducted on behalf of the Township of Amaranth. Most recently, and additional well (PW-3) was installed. A number of studies were conducted by R.J. Burnside and Associates Limited with respect to these wells, as noted below:

- "Report on Construction and Testing of PW3/02, Waldemar, Ontario" (R.J. Burnside & Associates Limited, 2003).
- "Township of Amaranth, GUDI Study for PW3/02, Waldemar, Ontario" (R.J. Burnside &Associates Limited, 2003).

In summary, these reports provide information on the hydrogeologic setting in the vicinity of the wells, and the status of the wells with respect to GUDI (Groundwater Under the Direct Influence of Surface Water) criteria.

Many homes within Waldemar are supplied with piped water obtained from three municipal wells. These municipal wells identified as PW-1, PW-2, and PW-3 are all located greater than 500m from the site, on the east side of the Grand River. The Permit to Take Water for PW-1 and PW-2 allows pumping rates of 5.7 L/s and 4.5 L/s, respectively (R.J. Burnside & Associates Limited, 2003). A Permit to Take Water was made for PW-3 for 5.3 L/s.

3.4.2 Hydrostratigraphic Conditions

Review of the well records for the municipal wells indicates that the subsurface conditions encountered at the wells can be divided into three hydrostratigraphic units: clayey till, sand and gravel, and bedrock. Each of these units is discussed individually below.

3.4.2.1 Clayey Till

The well records indicate that clayey materials were encountered at the surface at each of the well locations. This layer extended to depths ranging from 7 m to 24m below surface and contains sand, gravel, and cobbles; therefore this is likely a till deposit with a clay matrix.

The hydraulic conductivity of this layer is estimated to be approximately 10^{-8} to 10^{-10} m/s. Because of the low permeability of this soil type, this unit acts as a significant confining layer. It provides geologic isolation to the aquifer from the ground surface.

3.4.2.2 Sand and Gravel Deposits

The well record for PW-1 indicates that a deposit of sand and gravel was encountered at a depth of 7 m below ground surface. This deposit extended for 8 m to the dolostone bedrock. This deposit was not noted in any other municipal wells and is likely of limited extent.

3.4.2.3 Bedrock

Dolostone bedrock underlies the clayey glacial till materials in PW-2, PW-3 and the sand and gravel deposit in PW-1. The dolostone was noted to be fractured on the well records and was logged to depths ranging from 76 m to 106 m. This unit is the primary aquifer in the area.

3.4.3 Water Levels and Capture Zones

The static water level in the three municipal wells is 8 m, 15 m, and 5 m below ground surface for PW-1, PW-2, and PW-3, respectively.

The ten year capture zone for municipal wells extends approximately 2.8 km east of PW-1 and is approximately 700 m in width, as shown on Figure 13. The proposed subdivision lies outside the municipal wells capture zone.

3.4.4 GUDI Status of Municipal Wells

The study was conducted by R.J. Burnside Associates Limited (2003) to assess the GUDI status of PW3. The results of the study indicate that the well is not considered to be under the direct influence of surface water infiltration.

3.5 Hydraulic Conductivity Testing

Single well response testing was conducted on select monitoring wells to assess the saturated hydraulic conductivity throughout the site. Results from these tests are provided in the accompanying Appendix C. A summary of the results from the rising head tests are provided below. All of the wells are completed in the clay silt till strata.

<u>Well ID</u>	Saturated Hydraulic Conductivity (m/s
MW1D	2.4E-08
MW3S	2.6E-09
MW6	6.9E-08
MW8	6.7E-09
MW9	4.0E-09
MW11D	1.1E-08
MW12	5.5E-08
MW16	4.8E-09

The hydraulic conductivity ranged from 5.5 $\times 10^{-8}$ to 2.6 $\times 10^{-9}$ m/s, with geometric mean of 1 $\times 10^{-8}$ m/s, consistent with clayey silt till.

4.0 DISCUSSIONS AND ANALYSIS

The following discussion and recommendations are based on the data used for this study. These recommendations are presented for the purposes of assessing the feasibility of developing the proposed subdivision site. It is noted that further engineering will be required during the final design and construction of the development.

4.1 Summary of Hydrogeological Features of the Site

The principal hydrogeologic features of the site were used as a guide to assess the possible impact of the development on the local ground water system. This information was then used to assess the expected impact of the development on ground water recharge and quality.

The principal hydrogeological features of the site include the following:

- The majority of the site is characterized by deposits of low permeability glacial till. Higher permeability sand and gravel is found beneath a small section of the northern portion of the sites beneath the topsoil, and at depth within the till at two boreholes at the south of the site.
- From a regional perspective, the site and surrounding areas are generally characterized by surficial deposits of low permeability glacial till which overlies bedrock at depths of over 20 m. The overburden and glacial till are not significant water bearing units or aquifers. The underlying bedrock is an important regional aquifer and supplies the local municipal wells.
- It is interpreted that the development site is situated primarily in an area of ground water recharge. The site is situated on the north and east side of a local height of land. Shallow groundwater flow is directed northeastward towards the Grand River.

4.2 Water Supply

The proposed subdivision will comprise 336 lots. Based on the number of lots, an assumption of 4 people per lot, and an average domestic usage of 450 L per day/per person, the average domestic water usage required for the development is 605 m^3 /day.

Similarly the 2 hour peak demand is based on 3.75 L/min per person, yielding a peak usage of 5 m^3 /min for the development.

These water demand figures are preliminary. The actual domestic consumption will generally be lower, since the population is typically less than 4 persons per household. Production wells in the area, use the fractured dolostone, which a regional aquifer. This aquifer is capable of providing adequate supply for the

subdivision, however further studies will be needed to confirm the requirements for the expansion of the municipal system to acknowledge the water demand.

4.3 Proposed Sewage System Design

The proposed development will have a gravity fed sanitary system that will convey raw sewage from each lot to a single treatment facility on the southeast side of the development. Certain areas were gravity fed is not possible, pumping stations will be used to covey sewage to the treatment facility.

The treatment facility will then allow for discharge of treated sewage to the adjacent Grand River. The sewage collection, treatment, and discharge activities will not affect local ground water conditions.

4.3.1 Impact on Local Private Wells

Review of MOE water well records indicate that the local wells in the area are mostly completed in the bedrock, with several completed in the overburden. As noted above, there is a significant confining layer which separates the bedrock from the surface. Therefore, the water quality in the bedrock wells is not likely going to impacted by the proposed development.

A door-to-door well survey must be completed to confirm the details of the local wells. If needed, is the proposed to provide any local residents who have a shallow well in the overburden materials with a municipal water which will be servicing the proposed development.

4.4 Impact of Development on Water Balance

4.4.1 Water Balance for Existing Conditions

A preliminary water balance model for the site was prepared to assess the distribution of rainfall, runoff and infiltration for existing (pre-development) conditions. The model is based on the climate data presented in Section 2.4 of this report. The Thornwaite Method was used to calculate the relative balance between rainfall, evaporation and evapotranspiration in the shallow soil zone. Based on this calculation, a conceptual model of ground water flow and water balance was developed. The water balance calculations are provided in Appendix D.

In summary, the total ground water recharge component for the area is about 165 mm/a (Appendix D). This recharge was determined using MOE Table 2 and Table 3 approach in the Technical Information Requirements for Land Development Applications (1995).

4.4.2 Water Balance for Post Development Conditions

The post-development water balance model that was prepared (Appendix D) is based on a residential development of 336 lots, or the 35 hectares development area.

As noted above, development of the site will result in a reduction of evaporation and direct infiltration, and an increase in runoff. The additional runoff can be used as a resource to enhance infiltration and restore infiltration to pre-development levels or higher. There several ways to introduce the runoff including but not limited to; soak away pits, swales, or overland flow. Roof runoff is suitable for this purpose since it is generally clean and free of sediment. To restore infiltration rates to pre-development levels, the equivalent to infiltration of approximately 33% of the runoff from rood areas.

4.4.3 **Proposed Mitigation Measures**

The primary hydrogeological function at the site is the maintenance of recharge rates. In particular, the sandy layers in the northern portion of the property should be maintained, as this area may provide enhanced ground water baseflow to the Grand River, situated to the north and east of the site. Therefore, the primary design considerations will be:

- Maintenance of the ground recharge rates. The recharge rates should occur over a broad diffuse area to match existing conditions.
- Maintenance of the more permeable layers in the northern portion, and in particular, the maintenance of any groundwater flow within this area.

Based on the site conditions, there are a number of storm water management techniques which are available to maintain ground water recharge rates. The use of 33% of roof top runoof will allow for a total infiltration of 57,784 m³, equal to the pre development site infiltration.

In the northern portion of the site property, which is underlain with more permeable deposits, best management measures for maintaining infiltration should be considered. In this area, roof leaders could be discharged to surface and/or infiltration facilities.

The overall continuity of the ground water flow at the site should be maintained. The continuity if the higher permeable layers should be maintained to ensure that the pathway of ground water is not disrupted. In addition, house basements and underground services should not inadvertently drain ground water from such a zone.

Generally, the ground water pathways can be maintained through the following means:

- The proposed side grading plan should respect the continuity if the permeable layers in the northern portion of the property. Site grading in these areas should be conducted so that the zone is not truncated. Also, areas of surficial sand should be covered with materials of like or greater permeability.
- The excavation of underground services across permeable layers may interrupt ground water flow. Trench backfilling operations should be carried out with materials that are similar to the materials that have been excavated. In particular, sand zones must not be truncated by backfilling of trench using lower permeability material. The continuity of permeable zones can be ensured by providing a thin layer of permeable material such as sand and gravel, across the entire width of the trench.
- The bedding materials for underground services may serve as a subdrain to collect and convey ground water away from existing ground water transmission zones. This effect can be mitigated by the provision of trench plugs to cutoff granular bedding at all manhole locations.

As part of the final design, proposed site grading, drainage, and servicing plans should be reviewed by a qualified Hydrogeologist. The review should specifically address the requirements to maintain zones of groundwater transmission, as noted above.

5.0 SUMMMARY AND CONCLUSIONS

The results of the study indicate that the hydrogeologic features in the vicinity of the site can be characterized as follows:

- Most of the site is characterized by deposits of low permeability glacial till. The glacial till provides a significant protection to the local ground water resource.
- There is a municipal well system which services Waldemar. The well system obtains water from the underlying amabel dolomite which is a regional aquifer system.
- There are no significant natural features, such as water courses or wetland found on or directly adjacent to the site. The nearest significant natural feature is the Grande River found approximately 200 m to the north and east of the site.

It is concluded that the development will not cause a significant impact to local hydrogeologic conditions. In particular, the following is noted:

- The site does not provide for significant local ground water discharge to natural features or the Grande River. The Grande River generally obtains discharge from the underlying bedrock strata.
- Treated sewage generated at the development will be discharged in to the surface water and not the ground water.
- Ground water recharge and infiltration rates on the property can be maintained through conventional storm water management techniques. This includes infiltration of roof run off.

The following additional studies and/or supporting information required as the design and approvals of the development proceeds:

- Additional studies must be conducted to confirm the requirements for provision of additional water from the existing Municipal well system, to supply the proposed development. This may include assessment of additional water takings and/or provision of storage with respect to existing wells, and/or drilling of additional supply wells to augment water supply.
- A detailed water balance must be conducted as part of final design of the subdivision. Based on this water balance, the final design of appropriate storm water management measures (such as soak away pits, or other infiltration measures) must be provided in order to maintain overall ground water infiltrations rates.
- The final grading and servicing plan for the development must be reviewed to ensure basement, underground services do not intercept and/or cause dewatering of the isolated sand layers found on the property.

• A door-to-door survey should be conducted to identify any remaining private wells within approximately 250 m of the site. If necessary, provisions can be made for providing deeper wells and/or connection to the Municipal system if it appears the wells may be affected by the proposed development. Current information suggests that surrounding wells will not affected by the proposed development.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Ryan Smith, M.Sc., P.Geo. Project Manager

Paul Bowen, P.Eng., P.Geo., QP_{RA} Principal

				Terraprobe Inc. Consulting Geotechnical & Environmental Engineering Construction Materials, Inspection & Testing e - Brampton Ontario LGT 3Y3 (905) 796-2650
SVM	BOLS			KEY MAP
(active or		Beach ridges and near shore bars	a	the frame
d muck pit		Shore bluff or scarp	Constantion, 34 P	All - A
n of quarry		Crevasse filling	Concession 2-3. 84	Torre and the second se
gravel pit,		Crests of large sand dune (eolian)		1 de la companya de l
	••••	Trend of moraine crest	The same the	the of the soft
nd lee feature; d tail		Bedrock scarp or escarpment		
laciolacustrine	*****	Esker; direction of flow known		REFERENCE: The Ontario Geological Survey - 2003
or drumlinoid	~~~	Esker; direction of flow unknown		Surficial Geology of Southern Ontario
	•	Meltwater channel; inferred direction of flow	NOTES:	
fluting	••	Meltwater channel; direction of flow unknown		
ocality	*	iceberg keel mark		
nnical or phic borehole hing bedrock		Ice-contact slope		
	ΨΨ5	Clint and gryke topography		
weathering		Linear feature observed on aerial photograph		
	· · · · · · ·	Crest of megaripple	LEGEND:	
		Meltwater flow; inferred direction of flow		
ed pebble on in till	•-•	Meltwater flow; direction of flow unknown		
bir		Mapable edge of quarry or pit		
moutonee		Minor moraine		
site		Bedrock pressure release ridge		
ndslide scar		Ribbed or rogen moraine		
striae; direction ovement known		Edge of a mapable landslide scar		
striae; direction ovement n		Slump block, margin		_
		Abandoned meltwater channel or river channel; terrace escarpment	PROJECT TITL	E: Hydrogeological Investigation
sand dune		Area of landslide scar		
former lake		Area of hummocky topography	SITE LOCATIO	N: Waldemar Developments
ribbed moraine ges transverse w		Area of moraine with no hummocky topography		Township of Amaranth, Ontario
scabland			FIGURE TITLE	:
				SURFICIAL GEOLOGY

REV NO.:	FILE NO.:
0	13-13-3198-6
SCALE:	
NTS	FIGURE NO.:
DATE:	Ι Δ
January 2014	- T

	Construction Mate	al & Environmental Engineering rrais, Inspection & Testing tarrio L 6T 3Y3 (905) 796-2650
	KEY	MAP
<u>.</u>	MAP 2544	orthern Development and Mines logy of Ontario
ŀ	NOTES:	
ŀ	LEGEND:	
	PROJECT TITLE:	
	Hydrogeolog	jical Investigation
	SITE LOCATION:	
		Developments maranth, Ontario
	FIGURE TITLE:	OCK GEOLOGY
	REV NO.: 0	FILE NO.: 13-13-3198-6
	scale: NTS	FIGURE NO.:
	DATE: January 2014	5

Limestone, dolostone, shale, sandstone, gypsum, salt

54d Kenogami River Fm. (Upper Silurian to Lower Devonian)

Sandstone, shale, dolostone, siltstone

53d Clinton Gp.; Cataract Gp. 53e Thornloe Fm.; Earlton Fm.

52b Georgian Bay Fm.; Blue Mountain Fm.; Billings Fm.; Collingwood Mb.; Eastview Mb. 52d Red Head Rapids Fm. 52e Churchill River Gp. 52f Bad Cache Rapids Gp.

Limestone, dolostone, shale, arkose,

51a Ottawa Gp.; Simcoe Gp.; Shadow 51b Chazy Gp., Rockcliffe Fm.

CROSS SECTION A-A'

CROSS SECTION B-B'

CROSS SECTION C-C'

CROSS SECTION D-D'

Client : Sarah Properties Ltd Developments

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 1D

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 2

Posi	tion	: E: 557124, N: 4859399 (UTM 17T)					ion Datu Methoo	: Geodetic : Solid stem / hollow stem augers	
le (m)		SOIL PROFILE	bo	1	SAMPI	ES		enetration Test Values	Data and
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	Contrained Shear Strength (kPa) Ounconfined + Field Vane Pocket Penetrometer ■ Lab Vane Limit Water Content Limit Water Content Limit Vater Content Limit Va	IN SIZE BUTION (% MIT)
-0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)		1	SS	9			SA SI C
-1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)		2	SS	26	-	0	
2				3	SS	40		0	
_				4	SS	44		0	
-3		becomes grey		5	SS	43	-	· ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
-4									
- 5				6	SS	46	-	0	
- 6				7	SS	44	-		
-7									
	7.6	GRAVEL AND SAND, some silt, dense, grey, wet		8	SS	29			
- - 10				-	SS	68	-	o	

(continued next page)

Client : Sarah Properties Ltd Developments

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 1D

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 2 of 2

Positi	ion :	: E: 557124, N: 4859399 (UTM 17T)				Elevati	on Datu	m : Geodetic				
					I	Drilling	Method	: Solid stem / hollow stem auger	S			
ale (m)		SOIL PROFILE	Log		SAMPI	'N' Value	Scale	Penetration Test Values (Blows / 0.3m) × Dynamic Cone 10 20 30 40	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit	Headspace Vapour	Instrument Details	Lab Data and ≧ Comments
Depth Scale (m)	Elev Depth (m)	Description (continued)	Graphic	Number	Type	SPT 'N' V	Elevation (m)	Undrained Shear Strength (kPa) O Unconfined + Field Vane • Pocket Penetrometer Lab Vane 40 80 120 160	Limit Water Content Limit PL MC LL 10 20 30	Head Vap	Instru Det	Be and Comments ariters DISTRIBUTION (%) (MIT) GR SA SI CL
-		GRAVEL AND SAND, some silt, dense, grey, wet (continued)										
- 11	10.7	CLAYEY SILT, trace sand, trace gravel, very dense, grey, moist and wet	01110110	10	SS	50 / 100mm			0			
- 12	12.2			11	SS	50 / 50mm			0			
		END OF BOREHOLE				South						

Unstabilized water level measured at 3.0 m below ground surface; borehole was open upon completion of drilling.

50 mm monitoring well installed.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 1S

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Pos	tion	: E: 557124, N: 4859399 (UTM 17T)			l	Elevati	on Datu	n : Geodetic			
						Drilling	Method	: Solid stem / hollow stem auger	ſS		
Ê		SOIL PROFILE	-		SAMPI		le	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	t e	Lab Data
Depth Scale (m)	<u>Elev</u> Depti (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic cone 30 40 10 20 30 40 Undrained Shear Strength (kPa) 0 10 10 ○ Unconfined + Field Vane 9 0 ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour Instrument Details	Pazingersen GRAIN SIZE GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)			SS	9			0		
-1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)		2	SS	26			0		
-2				3	SS	40			0		
- 3		becomes grey		4	SS	44			0		
-			0	5	SS	43			0		
- 4 -	4.6										

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 2

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	ion :	E: 557049, N: 4859627 (UTM 17T)				Elevati	on Datu	: Geodetic	
Rig t	ype	: Track-mounted				Drilling	Method	: Solid stem / hollow stem augers	
Ê		SOIL PROFILE			SAMPI		ale	Penetration Test Values (Blows / 0.3m) Moisture / Plasticity	Data
⊣ ○ Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined + Field Vane Plastic Natural Liquid Limit Water Content Limit Plastic Natural Liquid Limit Water Content Limit PL MC LL PL MC LL PL MC LL	IN SIZE SUTION (%) MIT) SA SI CL
-		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)			SS	5		C	
-1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, wet (GLACIAL TILL)		2	SS	16			
-2				3	SS	31		o	
- 3		becomes grey		4	SS	41		o	
4				5	SS	40			
- 5				6	SS	38			
- 6	6.6			7	SS	34			

END OF BOREHOLE

6.6

Unstabilized water level measured at 4.6 m below ground surface; borehole was open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 3D

1 of 2

Project No.: 13-13-3198

Sheet No. :

Date started : April 29, 2014

Ê		SOIL PROFILE		5	Sampi		e	Penetration Test Values Blows / 0.3m) Moisture / Plasticity 8	Lab Da
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone To solution To solution <thto solution<="" th=""> To solution <thto solution<="" th=""> <thto solution<="" th=""></thto></thto></thto>	GRAIN SI GRAIN SI DISTRIBUTIO (MIT) GR SA
U		CLAYEY SILT, some sand, trace gravel, loose, dark brown, moist (TOPSOIL)		. 1	SS	37		• •	
· 1	0.5	CLAYEY SILT, trace sand, trace gravel, hard, brown, moist (GLACIAL TILL)		2	SS	10	-	• •	
2				3	SS	6	-	o	
2				4	SS	7	-	o	
3				5	SS	33	-	o	
4									
-5	4.6	CLAYEY SILT, trace sand, trace gravel, very stiff, grey, moist (GLACIAL TILL)		6	SS	27		o	
- 6				7	SS	40			
7									
-7 8 9 9				8	SS	18		o	
- 9									
				9	SS	100 / 150mm	1	o	

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 3D

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 2 of 2

: E: 557013, N: 4859848 (UTM 17T) Position Elevation Datum : Geodetic Rig type Track-mounted Penetration Test Values (Blows / 0.3m) SOIL PROFILE SAMPLES Scale Lab Data Moisture / Plasticity Headspace Vapour Depth Scale (m) Instrument Details 'N' Value and X Dynamic Cone Graphic Log Natural Water Content Plastic Limit Liquid Limit Comments 30 40 Number 1,0 20 Elev Depth (m) Elevation (m) Type Unstabi Water L Description Undrained Shear Strength (kPa) GRAIN SIZE DISTRIBUTION (%) (MIT)
 O Unconfined
 + Field Vane

 ● Pocket Penetrometer
 ■ Lab Vane

 40
 80
 120
 160
 MC SPT ł 0 20 30 10 (continued) GR SA SI C CLAYEY SILT, trace sand, trace gravel, very stiff, grey, moist (GLACIAL TILL) (continued) 92/ 10 SS 0 275mr - 11 - 12 SS 50/ 111 125mm 12.3

> WATER LEVEL READINGS <u>Water Depth (m)</u> 2014 9.0

<u>Date</u> Mar 11, 2014

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 3S

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Position : E: 557012, N: 4859846 (UTM 17T) Elevation Datum : Geodetic Rig type : Track-mounted Penetration Test Values (Blows / 0.3m) SOIL PROFILE SAMPLES Lab Data Scale Moisture / Plasticity Headspace Vapour Depth Scale (m) Instrument Details 'N' Value and X Dynamic Cone Graphic Log Unstabilized Water Level Natural Water Content Plastic Limit Liquid Limit Comments 30 10 20 40 Elev Depth (m) Number Elevation (m) Type Description Undrained Shear Strength (kPa) GRAIN SIZE O Unconfined ● Pocket Penetrometer 40 80 120 160 MC DISTRIBUTION (%) (MIT) SPT ł 0 20 30 10 GROUND SURFACE GR SA SI C 0 71 CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL) 1/ . 1/ SS 37 0 1 邸 0.5 CLAYEY SILT, trace sand, trace gravel, hard, brown, moist (GLACIAL TILL) 1 2 SS 10 0 SS 3 6 0 -2 4 SS 7 - 3 5 SS 33 0 -4

WATER LEVEL READINGS

Water Depth (m)

dry

<u>Date</u>

Mar 11, 2014

END OF BOREHOLE

4.6

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 4

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Position : E: 556988, N: 4860008 (UTM 17T)

Elevation Datum : Geodetic

	-						-	D	T () (.]		1				
Ê		SOIL PROFILE	5		Sampl		cale	Penetration (Blows / 0.3 × Dynamic	Test Values	2	Moisture / Pla	sticity	r ace	ent s	Lab Data হু ক্ল and
Depth Scale (m)	Elev Depth (m)		Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	1,0 Undrained S	20 Shear Streng fined Penetrometer	+ Field Vane ■ Lab Vane	Plastic Natural Limit Water Conf PL MC 1,0 20	LL LL 30	Headspace Vapour	Instrument Details	GRAIN SIZE DISTRIBUTION (%) (MIT)
-0		GROUND SURFACE	<u>x1//</u>			0	1	40	80	120 160	10 20	30			GR SA SI CL
		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>1/</u>		SS	86						0			
	0.5	CLAYEY SILT, trace sand, trace gravel, hard, brown, moist (GLACIAL TILL)					-								
- 1		(2	SS	25			1		0				
-2				3	SS	32					0				
		becomes grey		4	SS	53					0				
-3										/					
-				5	SS	44					0				
- 4															
-5				6	SS	48					0				:
-															
-6															
				7	SS	32				/	0				· ·

END OF BOREHOLE

6.6

Borehole was dry and open upon completion of drilling.

50 mm monitoring well installed.

WATER LEVEL READINGS <u>Date</u> <u>Water Depth (m)</u> Mar 11, 2014 dry

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 5D

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	ion :	: E: 556958, N: 4860174 (UTM 17T)			I	Elevati	on Datu	: Geodetic
Rig ty	/pe :	Track-mounted			[Drilling	Method	: Solid stem / hollow stem augers
Ê		SOIL PROFILE			SAMPL	ES	e	Penetration Test Values (Blows / 0.3m) Moisture / Plasticity 있 문 Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	(Biows / 0.3 m) Moisture / Plasticity 0 10 20 30 40 Undrained Shear Strength (kPa) Plastic Natural Liquid Liquid E 0 Unconfined + Field Vane PL MC LL 40 80 12.0 160 10.2 30
- 0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>1112</u>	. 1	SS	19		
-1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)	0	2	SS	15		
- 2				3	SS	16		o
-				4	SS	21		
- 3 -				5	SS	52		•
-4								
-5		becomes grey ,wet		6	SS	47		
6	6.2			7	SS	50 / 100mm		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 5S

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	tion	: E: 556958, N: 4860174 (UTM 17T)			l	Elevati	on Datu	n : Geodetic
Rig t	уре	: Track-mounted				Drilling	Method	: Solid stem / hollow stem augers
Ê		SOIL PROFILE			SAMPI		ale	Penetration Test Values (Blows / 0.3m) Moisture / Plasticity 8 + Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	(Blows 10.3m) Moisture / Plasticity 0 10 20 30 40 10 20 30 40 Plastic Natural Liquid Liquid Director Undrained Shear Strength (kPa) ○ Unconfined + Field Vane PL Mc LL ● Pocket Penetrometer ■ Lab Data Bog of the strength (kPa) PL Mc LL 0 10 20 30 10 Comments
-		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)		1	SS	19		
- 1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)		2	SS	15		Φ
-2				3	SS	16		0
- 3				4	SS	21		
-				5	SS	52		
- 4	4.6							

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 6

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	ion	: E: 556934, N: 4860321 (UTM 17T)				Elevati	on Datu	n : Geodetic			
Rig t	ype	: Track-mounted				Drilling	Method	: Solid stem / hollow stem augers	6		
Ê		SOIL PROFILE		5	Sampi		Scale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	ut ce	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	× Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined + Field Vane + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 2,0 3,0	Headspace Vapour Instrument Details	GRAIN SIZE GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)			SS	8			0		
- 1	0.5	CLAYEY SILT, trace sand, trace gravel, hard, brown, wet (GLACIAL TILL)		2	SS	28			0		
2				3	SS	25			0		
-				4	SS	78			0		
-3				5	SS	50 / 75mm			0		
- 4											
	4.6	END OF BOREHOLE Auger refusal		<u>\</u> 6_/	SS	50 / 25mm					-
		Borehole was dry and open upon completion of drilling.									

: Sarah Properties Ltd Developments Client

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 7

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	tion	: E: 557275, N: 4859408 (UTM 17T)				Elevati	on Datu	n : Geodetic				
Rig t	уре	Track-mounted				Drilling	Method	-	S			
Ê		SOIL PROFILE			SAMPI		e	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	е	ıt	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour	Instrument Details	Band Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	$\frac{\frac{\sqrt{1}}{\sqrt{1}}}{\frac{1}{\sqrt{1}}}$. 1	SS	17			0			
-1	0.8	CLAYEY SILT, trace sand, trace gravel, hard, brown, moist (GLACIAL TILL)		2	SS	22			0			
-2				3	SS	37			0			
-		becomes grey		4	SS	38			0			
-3	2.7	SAND, trace silt, very stiff, grey, wet		5								
- 4				5	SS	29			0			.⊻
-5	4.6	CLAYEY SILT, trace sand, trace gravel, hard, grey, moist (GLACIAL TILL)		6	SS	39			o			
- 6				7	SS	34			O			

END OF BOREHOLE

6.6

Unstabilized water level measured at 3.7 m below ground surface; borehole was open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 8

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	ion :	: E: 557321, N: 4859620 (UTM 17T)			E	Elevati	on Datu	m : Geode	tic						
Rig ty	ype :	Track-mounted			[Drilling	Method	: Solid s	tem / hollow	stem augers	S				
Ê		SOIL PROFILE	-		SAMPL		le	Penetration (Blows / 0.3n	est Values	٧	Moisti	ire / Plasticity	ė	ıt	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic 1,0 Undrained S		Field Vane Lab Vane	Plastic	Natural Liquid later Content Limit MC LL 2,0 3,0	Headspace Vapour	Instrument Details	Bailingersen GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
_0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>17 zv</u>	. 1	SS	27						0			
-1	0.5	CLAYEY SILT, trace sand, trace gravel, hard, brown, moist (GLACIAL TILL)		2	SS	8					C				
-2				3	SS	25					C				
				4	SS	30						C			
-3				5	SS	49						C			
-4															
-5				6	SS	94					C				- - - -
- 6															
	6.6			7	SS	29						0			

END OF BOREHOLE

6.6

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 9

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	ion	: E: 557171, N: 4859886 (UTM 17T)			l	Elevati	on Datu	n : Geodetic
Rig ty	pe	: Track-mounted			I	Drilling	Method	: Solid stem / hollow stem augers
Ê		SOIL PROFILE	-		SAMPI		lle	Penetration Test Values (Blows / 0.3m) Moisture / Plasticity 양 문 Lab Data
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	(Blows 10:3m) Allows 10:3m) Moisture / Plasticity 0 0 Lab Data and 10 20 30 40 Plastic Natural Liquid Undrained Shear Strength (kPa) O Unconfined + Field Vane PL MC LL 40 80 120 160 10 20 30
-		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>11</u> <u>12</u> <u>14</u> <u>14</u> <u>14</u>	1	SS	5		
-1	0.8	CLAYEY SILT, trace sand, trace gravel, stiff, brown, moist (GLACIAL TILL)	0	2	SS	13		
- -2				3	SS	33		•
- 3				4	SS	40		
- 4		becomes grey		5	SS	36		
-5	5.0			6	SS	21		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 10

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Position : E: 557109, N: 4860013 (UTM 17T) Elevation Datum : Geodetic Rig type Track-mounted Penetration Test Values (Blows / 0.3m) SOIL PROFILE SAMPLES Scale Lab Data Moisture / Plasticity Headspace Vapour Depth Scale (m) Instrument Details 'N' Value and X Dynamic Cone Graphic Log Unstabilized Water Level Natural Water Content Liquid Limit Plastic Limit Comments 30 40 10 20 Elev Depth (m) Number Elevation (m) Type Description Undrained Shear Strength (kPa) GRAIN SIZE DISTRIBUTION (%) (MIT) O Unconfined ● Pocket Penetrometer 40 80 120 160 МС LL SPT Ł 0 20 30 10 GROUND SURFACE GR SA SI C 0 71 CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL) 1/ . 1/ SS 45 0 1 NU 0.8 CLAYEY SILT, trace sand, trace gravel, 1 2 SS 10 0 stiff, brown, moist (GLACIAL TILL) SS 3 17 ¢ -2 4 SS 32 Ο - 3 5 SS 48 0 -4 Ţ 6 SS 54 0

> WATER LEVEL READINGS Water Depth (m) 4.7

<u>Date</u> Mar 11, 2014

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm monitoring well installed.

5

5.0

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 11D

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 2

		E: 557053, N: 4860109 (UTM 17T) CME 55					on Datu Method	m : Geodetic : Solid ste		w stem	augers	2						
	ype .	SOIL PROFILE			SAMPL			Penetration Tes (Blows / 0.3m)		w stern	augers		ioturo /	Diacticit	0			Lab Data
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Con 10 Undrained Shea O Unconfined Pocket Pene	e 2030 r Strength	(kPa) Field Va Lab Var	ine ie	Plastic Limit PL	Nat Water (Headspace Vapour	Instrument Details	Unstabilized Water Level	and Comments GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI C
- 0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)		1	SS	6							0					
- 1	0.6	CLAYEY SILT, trace sand, trace gravel, very stiff, brown (GLACIAL TILL)		2	SS	18							0	,				
-				3	SS	23							0					
-2				4	SS	67							0					
-3				5	SS	44							0					
- 4																		
- 5		becomes grey		6	SS	50							0					
- 6				7	SS	50 / 100mm						0						
e: 13-13-3198.gp)																		
port: terraprobe soil log 1 - 8 - 8				8	SS	50 / 100mm						0						
Ilbrary: library- terraprobe gmt.gbr report: terraprobe soil log file: 13-13-3195.gpl 				9	SS	50 / 125mm						0						
- 10																		

Project : Waldemar Development

LOG OF BOREHOLE 11D

Project No.: 13-13-3198

Date started : April 29, 2014

	_002	ation	: Township of Amaranth, Onta	rio								She	et No.	: 2	of 2		
			E: 557053, N: 4860109 (UTM 17T)		Elevati	ion Datu	m : Geodetic										
Ŀ	Rig ty	/pe :	: CME 55			Method			w stem a	augers	3					1	
	Depth Scale (m)	Elev Depth (m)	SOIL PROFILE Description (continued)	Graphic Log Number Type	SPT 'N' Value	Elevation Scale (m)	Penetration Test (Blows / 0.3m) × Dynamic Cone 10 2 Undrained Shea O Unconfined ● Pocket Pene 40	e 0 <u>3</u> 0 r Strength trometer	(kPa) Field Van Lab Vane	ie e	Mo Plastic Limit Pl	Water C	ontent Lim	Headspace Vapour	Instrument Details	Unstabilized Water Level	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-	11		CLAYEY SILT, trace sand, trace gravel, very stiff, brown (GLACIAL TILL) <i>(continued)</i>	8 10/ NR	507 25mm							0				· • • •	
		12.2		11/ NR	50 / 25mm	ł											
			END OF BOREHOLE		2311111												
			Borehole was dry and open upon completion of drilling. 50 mm monitoring well installed.														
[db]																	
glb report: terraprobe soil log file: 13-13-3198.gpj																	

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 11S

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	tion	: E: 557053, N: 4860109 (UTM 17T)				Elevati	on Datu	: Geodetic	
Rig t	уре	: CME 55			l	Drilling	Method	: Solid stem / hollow stem augers	
Ê		SOIL PROFILE	_		Sampi		le	enetration Test Values Blows / 0.3m) Moisture / Plasticity 8 + La	ab Data
Depth Scale (m)	<u>Elev</u> Depti (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic Cone <u>10</u> 20 30 40 ndrained Shear Strength (kPa) ○ Unconfined + Field Vane Procest Penetrometer ■ Lab Vane	and mments RAIN SIZE RIBUTION (%) (MIT) R SA SI CL
- 0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)			SS	6			
-1	0.6	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)	0	2	SS	18			
- 2				3	SS	23		0	
-				4	SS	67			
-3				5	SS	44			
- 4									

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 12

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	ion	: E: 557046, N: 4860208 (UTM 17T)			E	Elevati	on Datu	: Geodetic	
Rig t	ype	: Track-mounted			[Drilling	Method	: Solid stem / hollow stem augers	
Ê		SOIL PROFILE			SAMPL	ES	ale	Penetration Test Values Blows / 0.3m) Moisture / Plasticity 8 7 Lab I	
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic Cone <u>10</u> 20 30 40 Indrained Shear Strength (kPa) ○ Unconfined + Field Vane Pastic Natural Liquid Limit Water Content Limit ♥ acker Content Limit	nents
-0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>17</u> 7 <u>17</u> 7	. 1	SS	13		o	
- 1	0.6	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, wet (GLACIAL TILL)	0	2	SS	27			
- 2				3	SS	17			
-		becomes grey , moist		4	SS	44			
- 3 - - 4 -				5		50 / 50mm			
	4.6	END OF BOREHOLE		<u>\</u> 6,	SS /	50 / 50mm			

Unstabilized water level measured at 3.7 m below ground surface; borehole was open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 13

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Depth Scale (m)	E	Elev epth	Track-mounted SOIL PROFILE				Drilling	Method	: Solid stem / hollow stem auger	S			
	De	epth	SOIL PROFILE										
	De	epth				SAMPL		ale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	e	Ħ	Lab Data
-0		(11)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone 30 40 10 20 30 40 Undrained Shear Strength (kPa) 0 Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour	Instrument Details	BALL DE COMMENTS COMMENTS DESTRIBUTION (%) (MIT) GR SA SI CL
-			CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>1111111111111111111111111111111111111</u>		SS	8			0			
-1		0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)	0	2	SS	19			o			
- 2					3	SS	22			0			
-					4	<u>ss</u>	50 / 50mm			þ			
-3					5	SS	50 / 0mm			0			
- 4						AS	50/			0			Ϋ́

END OF BOREHOLE

Unstabilized water level measured at 4.0 m below ground surface; borehole was open upon completion of drilling.

: Sarah Properties Ltd Developments Client

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 14

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	tion	: E: 557096, N: 4860199 (UTM 17T)			I	Elevati	on Datu	n : Geodetic			
Rig t	ype :	: Track-mounted			[Drilling	Method	: Solid stem / hollow stem auger	rs		
Ê		SOIL PROFILE		5	SAMPL		ale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	e t	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic Cone 30 40 10 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL I C IL 10 20 30	Headspace Vapour Instrument Details	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	$\frac{\frac{1}{\sqrt{1/2}}}{\frac{1}{\sqrt{1/2}}}$. 1	SS	16			D		
-1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, wet (GLACIAL TILL)	0	2	SS	24			0		
-2				3	SS	15			0		
-				4	SS	28			0		
-3				5	SS	50 / 125mm			0		
- 4											
-5				6	SS ,	50 / 75mm			0		
	5.5		684		NK	50 / 10mm					

END OF BOREHOLE

Unstabilized water level measured at 4.6 m below ground surface; borehole was open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 15D

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 2

		557417, N: 4859437 (UTM 17T)					m : Geodetic					
	ype : ira I	SOIL PROFILE		SAM	-		: Solid stem / hollov	v stem augers	3			
Depth Scale (m)		Description ROUND SURFACE	Graphic Log		alue	Elevation Scale (m)	Penetration Test Values (Blows / 0.3m) × Dynamic Cone 10 20 30 Undrained Shear Strength (O Unconfined • Pocket Penetrometer 40 80 120	Field Vane Lab Vane	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-	dark (TO	AYEY SILT, some sand, trace gravel, k brown, moist PSOIL)		1 SS	8				¢			
- 1	stiff	AYEY SILT, trace sand, trace gravel, , brown, moist ,ACIAL TILL)		2 SS	9				0			
- 2				3 SS	14				0			
-				4 SS	31				0			
-3				5 SS	57				0			
- 4												
- 5 -				6 SS	50 / 75mm				0			
- 6 -				7 SS	50 / 100mm				0			
robe soil log file: 13-13-3198.gpj L 2				<u>8 / SS</u>	50 / 50mm				0			
Ilbrary: library - terraprobe gint.gbb report: terraprobe soil log file: 13-13-3188.gpl 				9 SS	56				0			₽
library: library 01 – 01 –												

Project : Waldemar Development

LOG OF BOREHOLE 15D

Project No.: 13-13-3198

Date started : April 29, 2014

LOC	ation	: Township of Amaranth, Onta	rio						Sheet No. : 2 of 2	
Pos	tion	: E: 557417, N: 4859437 (UTM 17T)			E	levati	on Datu	m : Geodetic		
Rig	type	: Track-mounted			D	rilling	Method	: Solid stem / hollow stem a	augers	
Ê		SOIL PROFILE	_	SA	MPL		e	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity 的 せ	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description	Graphic Log		Iype	SPT 'N' Value	Elevation Scale (m)	× Dynamic Cone <u>10</u> 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid	and Comments GRAIN SIZE ISTRIBUTION (%) (MIT) GR SA SI CL
- - 11		CLAYEY SILT, trace sand, trace gravel, stiff, brown, moist (GLACIAL TILL) (continued)		0,_5	<u>ss</u> _/	50 / 50mm				
- - 12				10 /		50 / 1				
	12.2	END OF BOREHOLE	Ľ	<u>1/ /</u>	<u>↓s</u> _/	50 / 25mm				
		Unstabilized water level measured at 9.1 m below ground surface; borehole was open upon completion of drilling. 50 mm monitoring well installed.								
gint.gb report: terraprobe soil log file: 13-13-3198.gp)										

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 15S

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	tion	: E: 557417, N: 4859437 (UTM 17T)				Elevati	on Datu	n : Geodetic
Rig t	уре	: Track-mounted				Drilling	Method	: Solid stem / hollow stem augers
Ê		SOIL PROFILE			SAMP		ale	Penetration Test Values (Blows / 0.3m) Moisture / Plasticity 8 + Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	(Blows 10.3m) Moisture / Plasticity 0 0 10 20 30 40 Undrained Shear Strength (kPa) Olnconfined Field Vane Plastic Natural Liquid 0 Unconfined + Field Vane Plastic Comments 0 0 120 160 10 20 30
- 0 -		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>11</u>		SS	8		φ
-1	0.8	CLAYEY SILT, trace sand, trace gravel, stiff, brown, moist (GLACIAL TILL)	01110	2	SS	9		0
-2				3	SS	14		o
- 3				4	SS	31		
-				5	SS	57		
- 4	4.6							

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

Position : E: 557522, N: 4859474 (UTM 17T)

Elevation Datum : Geodetic

Ê		SOIL PROFILE			Sampi		Scale	Penetration Test (Blows / 0.3m)		Moisture / Plasticity	s L s	Lab Data
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	× Dynamic Cone 10 2(Undrained Shear O Unconfined ● Pocket Penet 40 8(0 30 40 Strength (kPa) + Field Vane rometer ■ Lab Vane	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour Instrument Details	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)		. 1	SS	4				<u>р</u> <u>р</u> <u>р</u>		UK SA SI UL
	0.5											
- 1		very dense, brown, moist (GLACIAL TILL)		2	SS	13				0		
-2				3	SS	20				0		
-												
-				4	SS	76				0		
-3												
_ 3				5	SS	85				0		• • •
- 4												₽
-				\mathbb{H}								
				6	SS	48				0		
- 5	5.0		-1420			I	J					1

END OF BOREHOLE

Unstabilized water level measured at 4.3 m below ground surface; borehole was open upon completion of drilling.

50 mm monitoring well installed.

LOG OF BOREHOLE 16

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 17

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	tion	: E: 557469, N: 4859542 (UTM 17T)			I	Elevati	on Datu	: Geodetic	
Rig t	уре	: Track-mounted			[Drilling	Method	: Solid stem / hollow stem augers	
Ê		SOIL PROFILE	-		SAMPL		lle	enetration Test Values Nows / 0.3m) Moisture / Plasticity 8	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	Novis / 10.3m) X Dynamic Cone 10 20 30 40 O Unconfined + Field Vane ♦ Ooket Penetrometer ■ Lab Vane 40 80 120 160 10 20 30	Bear and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	$\frac{\frac{\sqrt{1}}{\sqrt{1}}}{\frac{1}{\sqrt{1}}}$. 1	SS	9		o	
-1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)	0	2	SS	10		0	
- 2				3	SS	27		o	
-				4	SS	80			
- 3				5	SS	74			
- 4				6	SS	20 / 100mm			

END OF BOREHOLE

4.8

Borehole was dry and open upon completion of drilling.

Project : Waldemar Development

Location : Township of Amaranth, Ontario

LOG OF BOREHOLE 18

Project No.: 13-13-3198

Date started : April 29, 2014

Sheet No. : 1 of 1

Posit	tion	: E: 557411, N: 4859702 (UTM 17T)				Elevati	on Datu	n : Geodetic			
Rig t	уре	: Track-mounted		-		Drilling	Method	: Solid stem / hollow stem augers			
Ê		SOIL PROFILE			SAMP		ale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	9 ±	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone 30 40 10 20 30 40 Undrained Shear Strength (kPa) 0 Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour Instrument Details	GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)		1	SS	12			0		
-1	0.8	CLAYEY SILT, trace sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)		2	SS	12			0		
- 2				3	SS	35			0		
- 3				4	SS	24			Φ		
- 4	5.0			6	SS	50 / 150mm 83 / 250mm			0		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

SIEVE AND HYDROMETER ANALYSIS **TEST FORM**

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON CLIENT: Sarah Properties Ltd. Development BOREHOLE: 6 SAMPLE NUMBER: 3 SAMPLE DEPTH: 1.5 - 2.0 m SAMPLE DESCRIPTION: SAND AND SILT, some gravel, trace clay FILE NO.: 13-13-3198 SAMPLE DATE: April, 2014 SAMPLED BY: T.G. TEST DATE: April 29, 2014 TESTED BY: SR LAB NO.: 1060B

COARSE SIEVES

Dry Weight (g)		347.5		
SIEVE	E SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
1.5"	37.5	0.00	0.0	100.0
3/4"	19.0	0.00	0.0	100.0
3/8"	9.5	14.46	4.2	95.8
No. 4	4.75	28.17	8.1	91.9
No. 10	2.00	34.69	10.0	90.0
P/	AN	312.60		
Dry Weight Afte	er Sieving (g)	347.3		
Percent Loss A	fter Sieving	0.05		

FINE SIEVES (after washing)

Dry Weight		50.38]	
Percent Passin	g No.4 (%)	90		
SIEVE	E SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
No. 20	0.840	4.80	9.5	81.5
No. 40	0.425	7.74	15.4	76.2
No. 60	0.250	10.86	21.6	70.6
No. 140	0.105	18.26	36.2	57.4
No. 200	0.075	21.04	41.8	52.4

HYGROSCOPIC MOISTURE CONTENT

Wt. of wet soil and tare (g)	2.00
Wt. of dry soil and tare (g)	2.00
Wt. of water (g)	0.00
Wt. of tare (g)	1.00
Wt. of wet soil (g) (W _A)	1.00
Wt. of dry soil (g) (W ₀)	1.00
Water content (%)	0.00

HYDROMETER

	December 6, 2012, new Gs for proscopic Correction Factor 1.000000 rected Sample Weight (M _o) 50.38 t sample represented by soil (W) 55.97 Correction Factor 0.985209 cific Gravity 2.717 e and time Elapsed Time Divisions Divisions Divisions										
Hygroscopic Correction Factor 1.000000											
Corrected Sample Weight (M _o)			50.38								
Test sample re	epresented by a	soil (W)	55.97								
Gs Correction	Factor		0.985209								
Specific Gravi	ty		2.717								
		H₅ in	H _c in	Tomp T	Corrected	Percent		n in		Particle	
Date and time	Elapsed Time	Divisions	Divisions		Reading	Passing	L in cm		К	Diameter	
		(G/L)	(G/L)	(0)	$R = H_s - H_c$	P in %		mmroise		D in mm	
	1	30.0	5.0	23.3	25.0	44.01	11.3029	9.3273	0.0129	0.0434	Hydrometer
	2	26.0	5.0	23.3	21.0	36.97	12.1029	9.3273	0.0129	0.0317	L_1
	5	22.5	5.0	23.3	17.5	30.81	12.8029	9.3273	0.0129	0.0206	L_2
	15	19.0	5.0	23.1	14.0	24.64	13.5029	9.3707	0.0129	0.0123	Vb
	30	17.0	5.0	23.1	12.0	21.12	13.9029	9.3707	0.0129	0.0088	H _s
	60	15.0	5.0	23.0	10.0	17.60	14.3029	9.3925	0.0129	0.0063	H _m
	250	11.0	5.0	23.6	6.0	10.56	15.1029	9.2629	0.0129	0.0032	A
	1440	9.0	5.0	23.2	4.0	7.04	15.5029	9.3490	0.0129	0.0013	

SIEVE AND HYDROMETER ANALYSIS TEST REPORT

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON CLIENT: Sarah Properties Ltd. Development BOREHOLE: 6 SAMPLE NUMBER: 3 SAMPLE DEPTH: 1.5 - 2.0 m SAMPLE DESCRIPTION: SAND AND SILT, some gravel, trace clay FILE NO.: **13-13-3198** LAB NO.: **1060B** SAMPLE DATE: **April, 2014** SAMPLED BY: **T.G.**

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON
CLIENT: Sarah Properties Ltd. Development
BOREHOLE: 1
SAMPLE NUMBER: 9
SAMPLE DEPTH: 9.1 - 9.6 m
SAMPLE DESCRIPTION: GRAVEL AND SAND, some silt

COARSE SIEVES

Dry Weight (g)		610.5		
SIEVE	SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
1.5"	37.5	0.00	0.0	100.0
3/4"	19.0	0.00	0.0	100.0
3/8"	9.5	123.18	20.2	79.8
No. 4	4.75	207.15	33.9	66.1
No. 10	2.00	289.51	47.4	52.6
	۹N	320.53		
Dry Weight Afte	er Sieving (g)	610.0		
Percent Loss A	fter Sieving	0.07		

FINE SIEVES (after washing)

Dry Weight		100.48]	
Percent Passin	g No.4 (%)	53		
SIEVE	ESIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
No. 20	0.840	33.47	33.3	35.1
No. 40	0.425	57.35	57.1	22.6
No. 60	0.250	67.24	66.9	17.4
No. 140	0.105	75.96	75.6	12.8
No. 200	0.075	78.74	78.4	11.4

HYGROSCOPIC MOISTURE CONTENT

Wt. of wet soil and tare (g)	2.00
Wt. of dry soil and tare (g)	2.00
Wt. of water (g)	0.00
Wt. of tare (g)	1.00
Wt. of wet soil (g) (W _A)	1.00
Wt. of dry soil (g) (W ₀)	1.00
Water content (%)	0.00

HYDROMETER

HIDROWETER	x										
	December 6, 201	2, new Gs for									
Hygroscopic C	Correction Fact	or	1.000000								
Corrected San	nple Weight (M	.)	100.48								
Test sample re	presented by	soil (W)	191.11								
Gs Correction	Factor		0.985209								
Specific Gravi	ty		2.717								
		H₅ in	H _c in	Tomm T	Corrected	Percent				Particle	
Date and time	Elapsed Time	Divisions	Divisions	Temp. T _c	Reading	Passing	L in cm	n in	к	Diameter	
	•	(G/L)	(G/L)	(C)	$R = H_s - H_c$	P in %		milliPoise		D in mm	
	1	(0/2/	(0/2/		30	/0					Hydrometer
	2										L_1
	5										L_2
	15										Vb
	30										Hs
	60										H _m
	250										А
	1440										

FILE NO.: 13-13-3198 SAMPLE DATE: April, 2014 SAMPLED BY: T.G. TEST DATE: April 29, 2014 TESTED BY: SR LAB NO.: 1060A

SIEVE ANALYSIS TEST REPORT

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON CLIENT: Sarah Properties Ltd. Development BOREHOLE: 1 SAMPLE NUMBER: 9 SAMPLE DEPTH: 9.1 - 9.6 m SAMPLE DESCRIPTION: GRAVEL AND SAND, some silt FILE NO.: **13-13-3198** LAB NO.: **1060A** SAMPLE DATE: **April, 2014** SAMPLED BY: **T.G.**

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

SIEVE AND HYDROMETER ANALYSIS TEST FORM

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON CLIENT: Sarah Properties Ltd. Development BOREHOLE: 16 SAMPLE NUMBER: 5 SAMPLE DEPTH: 3.0 - 3.5 m SAMPLE DESCRIPTION: SAND AND SILT, some gravel, some clay FILE NO.: 13-13-3198 SAMPLE DATE: April, 2014 SAMPLED BY: T.G. TEST DATE: April 29, 2014 TESTED BY: SR LAB NO.: 1060C

COARSE SIEVES

Dry Weight (g)		373.0		
SIEVE	E SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
1.5"	37.5	0.00	0.0	100.0
3/4"	19.0	0.00	0.0	100.0
3/8"	9.5	13.94	3.7	96.3
No. 4	4.75	39.71	10.6	89.4
No. 10	2.00	52.67	14.1	85.9
P/	AN	320.13		
Dry Weight Afte	er Sieving (g)	372.8		
Percent Loss A	fter Sieving	0.05		

FINE SIEVES (after washing)

Dry Weight		50.37		
Percent Passin	g No.4 (%)	86		
SIEVE	SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
No. 20	0.840	5.47	10.9	76.5
No. 40	0.425	8.55	17.0	71.3
No. 60	0.250	10.92	21.7	67.2
No. 140	0.105	16.82	33.4	57.2
No. 200	0.075	19.62	39.0	52.4

HYGROSCOPIC MOISTURE CONTENT

Wt. of wet soil and tare (g)	2.00
Wt. of dry soil and tare (g)	2.00
Wt. of water (g)	0.00
Wt. of tare (g)	1.00
Wt. of wet soil (g) (W _A)	1.00
Wt. of dry soil (g) (W ₀)	1.00
Water content (%)	0.00

HYDROMETER

HIDROWEIE	December 6, 2012, new Gs for rgroscopic Correction Factor 1.000000 prected Sample Weight (M _o) 50.37 st sample represented by soil (W) 58.65 sc Correction Factor 0.985209 precific Gravity 2.717										
	December 6, 201	12, new Gs for	r	_							
Corrected San	nple Weight (M	。)	50.37								
Test sample re	epresented by	soil (W)	58.65								
Gs Correction	Factor		0.985209								
Specific Gravi	ty		2.717								
		H₅ in	H _c in	Temp. T _c	Corrected	Percent		n in		Particle	
Date and time	Elapsed Time	Divisions	Divisions		Reading	Passing	L in cm		ĸ	Diameter	
	-	(G/L)	(G/L)	(C)	$R = H_s - H_c$	P in %		milliPoise		D in mm	
	1	30.0	5.0	23.6	25.0	41.99	11.3029	9.2629	0.0129	0.0432	Hydrometer
	2	26.0	5.0	23.6	21.0	35.27	12.1029	9.2629	0.0129	0.0316	L ₁
	5	23.0	5.0	23.6	18.0	30.24	12.7029	9.2629	0.0129	0.0205	L_2
	15	20.0	5.0	23.4	15.0	25.20	13.3029	9.3058	0.0129	0.0121	Vb
	30	18.0	5.0	23.2	13.0	21.84	13.7029	9.3490	0.0129	0.0087	Hs
	60	16.0	5.0	23.2	11.0	18.48	14.1029	9.3490	0.0129	0.0063	H _m
	250	13.0	5.0	23.6	8.0	13.44	14.7029	9.2629	0.0129	0.0031	A
	1440	10.0	5.0	23.2	5.0	8.40	15.3029	9.3490	0.0129	0.0013	

SIEVE AND HYDROMETER ANALYSIS TEST REPORT

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON CLIENT: Sarah Properties Ltd. Development BOREHOLE: 16 SAMPLE NUMBER: 5 SAMPLE DEPTH: 3.0 - 3.5 m SAMPLE DESCRIPTION: SAND AND SILT, some gravel, some clay FILE NO.: **13-13-3198** LAB NO.: **1060C** SAMPLE DATE: **April, 2014** SAMPLED BY: **T.G.**

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

SIEVE AND HYDROMETER ANALYSIS TEST FORM

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON CLIENT: Sarah Properties Ltd. Development BOREHOLE: 18 SAMPLE NUMBER: 5 SAMPLE DEPTH: 3.0 - 3.5 m SAMPLE DESCRIPTION: SANDY SILT, some clay, trace gravel FILE NO.: 13-13-3198 SAMPLE DATE: April, 2014 SAMPLED BY: T.G. TEST DATE: April 29, 2014 TESTED BY: SR LAB NO.: 1060D

COARSE SIEVES

Dry Weight (g)		259.7		
SIEVE	E SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
1.5"	37.5	0.00	0.0	100.0
3/4"	19.0	0.00	0.0	100.0
3/8"	9.5	0.00	0.0	100.0
No. 4	4.75	5.86	2.3	97.7
No. 10	2.00	6.59	2.5	97.5
	AN	253.00		
Dry Weight Afte	er Sieving (g)	259.6		
Percent Loss A	fter Sieving	0.05		

FINE SIEVES (after washing)

Dry Weight		50.30		
Percent Passin	g No.4 (%)	97		
SIEVE	ESIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
No. 20	0.840	2.46	4.9	92.7
No. 40	0.425	4.31	8.6	89.1
No. 60	0.250	5.96	11.8	86.0
No. 140	0.105	10.21	20.3	77.7
No. 200	0.075	12.19	24.2	73.9

HYGROSCOPIC MOISTURE CONTENT

Wt. of wet soil and tare (g)	2.00
Wt. of dry soil and tare (g)	2.00
Wt. of water (g)	0.00
Wt. of tare (g)	1.00
Wt. of wet soil (g) (W _A)	1.00
Wt. of dry soil (g) (W ₀)	1.00
Water content (%)	0.00

HYDROMETER

HIDROWETER	`										
	December 6, 201										
Hygroscopic (Correction Fact	1.000000									
Corrected Sample Weight (M _o)			50.30								
Test sample represented by soil (W)			51.61								
Gs Correction Factor			0.985209								
Specific Gravi	ty		2.717								
		H₅ in	H _c in	Tomp T	Corrected	Percent		n in		Particle	
Date and time	Elapsed Time	Divisions	Divisions	Temp. T _c	Reading	Passing	L in cm	n in milliPoise	κ	Diameter	
		(G/L)	(G/L)	(C)	$R = H_s - H_c$	P in %		mmFoise		D in mm	
	1	39.5	5.0	23.5	34.5	65.86	9.4029	9.2843	0.0129	0.0395	Hydrometer
	2	37.0	5.0	23.5	32.0	61.09	9.9029	9.2843	0.0129	0.0286	L_1
	5	33.5	5.0	23.5	28.5	54.41	10.6029	9.2843	0.0129	0.0187	L_2
	15	30.0	5.0	23.2	25.0	47.72	11.3029	9.3490	0.0129	0.0112	Vb
	30	27.3	5.0	23.2	22.3	42.57	11.8429	9.3490	0.0129	0.0081	H _s
	60	25.0	5.0	23.2	20.0	38.18	12.3029	9.3490	0.0129	0.0058	H _m
	250	19.0	5.0	23.6	14.0	26.73	13.5029	9.2629	0.0129	0.0030	A
	1440	14.0	5.0	23.2	9.0	17.18	14.5029	9.3490	0.0129	0.0013	

SIEVE AND HYDROMETER ANALYSIS TEST REPORT

PROJECT: Waldemar Developments LOCATION: Township of Amaranth, ON CLIENT: Sarah Properties Ltd. Development BOREHOLE: 18 SAMPLE NUMBER: 5 SAMPLE DEPTH: 3.0 - 3.5 m SAMPLE DESCRIPTION: SANDY SILT, some clay, trace gravel FILE NO.: **13-13-3198** LAB NO.: **1060D** SAMPLE DATE: **April, 2014** SAMPLED BY: **T.G.**

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

Client

TEST PIT LOG 1

Project No. : 13-13-3198-6

Date excavated : January 9, 2014

Project : Waldemar Developments

: Sarah Properties Ltd Developments

Loca	tion :	Township of Amaranth					Sheet No. : 1 o	/f 1			
Positi	on :	E: 557197, N: 4860128 (UTM 17T)			Eleva	tion Dat	m : Geodetic				
Rig ty	g type : BACKHOE										
ب		SOIL PROFILE		SAMPLE		le	Indrained Shear Strength (kPa) Moisture / Plasticity o	Lab Data			
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	Elevation Scale (m)	O Unconfined Moisture / Plasticity 0 </td <td>and Comments DISTRIBUTION (%) (MIT) GR SA SI CL</td>	and Comments DISTRIBUTION (%) (MIT) GR SA SI CL			
- 0.0 - -		SILTY CLAY, trace sand, compact, brown, moist (TOPSOIL)				_					
- 0.5 	0.4	SANDY SILT, some clay, some boulders, some cobbles, some gravel, dense, brown, moist (GLACIAL TILL)		2	GS						
- - 3.0	3.1	END OF TEST PIT									
		Test pit was dry and open upon completion of excavation.									

Client

TEST PIT LOG 2

Project No. : 13-13-3198-6

Date excavated : January 21, 2014

Sheet No. : 1 of 1

Project : Waldemar Developments Location : Township of Amaranth

: Sarah Properties Ltd Developments

Rig type : Elev 0.0 Elev 0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -1.0 0.0 -1.0 0.0 -1.10 0.0 -2.0 0.0 -2.0 0.0	BACKHOE SOIL PROFILE Description	Бс	SAN									
- 0.0 		БĊ	SAN								1	
- 0.0 	GROUND SURFACE	Graphic Log	Number	MPLES adí	Elevation Scale (m)	+ Field Va ■ Lab Var	ned Penetromete ine	er	Natural Water Conten MC 20	-	Headspace Vapour	Lab Data and Comments GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI C
- 0.6 - 0.6 	SANDY SILT, trace clay, trace gravel, trace cobbles, trace boulders, brown, moist (TOPSOIL)				,							
- - - 1.0 - - - - - 1.5 - - - - - -			1	GS								
- - - - 1.5 - -	SAND AND GRAVEL, some silt, some cobbles, some boulders, brown, wet											
-		°°°°°°°°°°°°°										
- - 2.0 - -												
-				GS								
- 2.5 												
-3.0) 0 0										little pounding water

Test pit was dry and open upon completion of excavation.

TEST PIT LOG 3

little pounding water

Client	: :	Sarah Properties Ltd Developmen	ts							Project I	No.	:	13-13-3198-6
Proje	ct :	Waldemar Developments								Date ex	cavat	ted :	January 21, 2014
Locat	ion :	Township of Amaranth								Sheet N	lo.	:	1 of 1
Positio	n :	E: 557052, N: 4860323 (UTM 17T)			Eleva	tion Dat	tum : Geodet	ic					
Rig typ	e :	BACKHOE											
Ê		SOIL PROFILE		SAN	/ PLES	e	Undrained Shear	Strength (kPa)	Moisture / Pl	asticity			Lab Data
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	Elevation Scale (m)	 Unconfined Pocket Pen Field Vane Lab Vane 40 80 		Plastic Natural Limit Water Conte PL MC 1,0 20	-	Headspace Vapour	Unstabilized Water Level	and Comments GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI C
- 0.5		SILTY SAND, trace clay, trace gravel, dark brown, moist (TOPSOIL)		1	GS	-							
-1.0	0.9	SANDY SILT, some clay, some cobbles, some boulders, brown, wet		2	GS	-							

-2.5

- 3.0

3.1 END OF TEST PIT

TEST PIT LOG 4

Project No. : 13-13-3198-6

:

Sheet No.

Date excavated : January 21, 2014

1 of 1

Project : Waldemar Developments Location : Township of Amaranth

: Sarah Properties Ltd Developments

2000.000			
Position	: E: 556985, N: 4860364 (UTM 17T)	Elevation Datum	: Geodetic
Rig type	: BACKHOE		

	SOIL PROFILE		SAN	IPLES	e				gth (kPa)	м	oisture	/ Plastic	itv		Lab Data
Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	Elevation Scale (m)	● F + F	ield Van ab Vane	enetrome e		Plasti Limit P	c Nat Water (ural I Content	Liquid Limit L	Headspace Vapour	and Comments GRAIN SI DISTRIBUTIO (MIT) GR SA S
	SILTY SAND, trace clay, trace gravel, dark brown, moist (TOPSOIL)										<u> </u>				
0.5	COARSE SAND, some gravel, some cobbles, trace boulders, brown, moist														

TEST PIT LOG 5

Project No. : 13-13-3198-6

Date excavated : January 24, 2014

Sheet No. : 1 of 1

Project	:	Waldemar Developments
Location	:	Township of Amaranth

: Sarah Properties Ltd Developments

		E: 556900, N: 4860383 (UTM 17T) EXCAVATOR			Eleva	tion Da	tum	: Ge	odetic									
		SOIL PROFILE		SAI	MPLES	Ð	Und	Irained	Shear S	trenath	ı (kPa)						Lab Da	ita
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	Elevation Scale (m)		O Unco ● Pocke + Field ■ Lab \	nfined et Penetr Vane	ometer		Plast Limit	ic Nar Water PL N	IC I	iquid Limit L	Headspace Vapour	And Charatelized Charater Level	
- 0.0 - -		SILTY SAND, trace clay, some gravel, dark brown, moist (TOPSOIL)	<u>10</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u>					+0			ļ							<u>37 38 31 6L</u>
- - 0.5			$\frac{\sqrt{I_2}}{\sqrt{I_2}}$	1	GS													
-	0.6	SAND, some silt, some gravel, some cobbles, brown, moist																
- 1.0 - -																		
- - - 1.5																		
- 1.5 - -																		
- 2.0				2	GS	-												
-																		
- 2.5																		
For Ind test provide	3.1			1]												
B		Test pit was dry and open upon completion of excavation.																

: Sarah Properties Ltd Developments

TEST PIT LOG 6

Project No. : 13-13-3198-6

cavated : January 24 20

ct :	Waldemar Developments											D	ate ex	cavat	ed: J	anuary 24, 2014
ion :	Township of Amaranth											S	heet N	lo.	: 1	of 1
n :	E: 556931, N: 4860324 (UTM 17T)			Eleva	ition Da	tum : Ge	odetic									
e :	EXCAVATOR		-		-										-	
	SOIL PROFILE		SAI	MPLES	ale			strength	(kPa)	M	oisture	Plastic	ity	l o		Lab Data
Elev Depth (m)		Graphic Log	Number	Type	Elevation Sca (m)	 Pock + Field Lab \ 	et Peneti Vane /ane		30	Plastii Limit	c Nat Water (L N	ural I Content	Liquid Limit	Headspace	Unstabilized Water Level	and Comments GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI CI
	CLAYEY SILT, some sand, some gravel, brown, moist (TOPSOIL)	<u>\\</u> <u>1</u> \				+0					<u> </u>					GK 3A 31 C
0.4	SAND, some silt, some gravel, some cobbles, some boulders, brown, wet (GLACIAL TILL)		1	GS												
			2	GS	_											
					-											
	ion : pe : <u>Elev</u> Depth (m)	Elev Depth (m) Description GROUND SURFACE CLAYEY SILT, some sand, some gravel, brown, moist (TOPSOIL) 0.4 SAND, some silt, some gravel, some cobbles, some boulders, brown, wet	ion : Township of Amaranth in : E: 556931, N: 4860324 (UTM 17T) ive : EXCAVATOR SOIL PROFILE Elev Depth (m) Description GROUND SURFACE CLAYEY SILT, some sand, some gravel, brown, moist (TOPSOIL)	ion : Township of Amaranth n : E: 556931, N: 4860324 (UTM 17T) he : EXCAVATOR SOIL PROFILE SAT COUND SURFACE SAT GROUND SURFACE CLAYEY SILT, some sand, some gravel, brown, moist (TOPSOIL) 0.4 SAND, some silt, some gravel, some (GLACIAL TILL) 0.4 SAND, some boulders, brown, wet (GLACIAL TILL)	ion : Township of Amaranth n : E: 556931, N: 4860324 (UTM 17T) Eleva e : EXCAVATOR SOIL PROFILE SAMPLES Clavery SILT, some sand, some gravel, brown, moist (TOPSOIL) UIT, some sand, some gravel, brown, moist (TOPSOIL) UIT, some gravel, some cobbles, some boulders, brown, wet (GLACIAL TILL) I GS	ion : Township of Amaranth n : E: 556931, N: 4860324 (UTM 17T) Elevation Da be : EXCAVATOR <u>SOIL PROFILE</u> <u>SAMPLES</u> of the provided of the	ion : Township of Amaranth In : E: 556931, N: 4860324 (UTM 17T) In : E: 556931, N: 486034 (UTM 17T) In : E: 556931, N: 486034 (UTM 17T) In : E	ion : Township of Amarath n : E: 556931, N: 4860324 (UTM 17T) Elevation Datum : Geodetic is EXCAVATOR <u>SOIL PROFILE</u> <u>SAMPLES</u> of Undrained Shear C <u>Colorect Parent</u> <u>GROUND SURFACE</u> <u>Samples</u> <u>ag</u> <u>GROUND SURFACE</u> <u>ag</u> <u>GROUND SURFACE</u> <u>Samples</u> <u>ag</u> <u>GROUND SURFACE</u> <u>Samples</u> <u>ag</u> <u>GROUND SURFACE</u> <u>Samples</u> <u>ag</u> <u>GROUND SURFACE</u> <u>ag</u> <u>GROUND </u>	ion : Township of Amarth n : E: 556931, N: 4860324 (UTM 17T) Elevation Datum : Geodetic ter : EXCAVATOR SOIL PROFILE SAMPLES <u>Clavery SiLT, some sand, some</u> gravel, brown, moist (TOPSOIL) <u>SAMP, some sit, some gravel, some</u> (GLACIAL TILL) <u>SAMPLES</u> <u>Clavery SiLT, some sand, some</u> gravel, brown, wet	ion : Township of Amaranth n : E: 556931, N: 4860324 (UTM 17T) Elevation Datum : Geodetic tere : EXCAVATOR SOIL PROFILE SAMPLES Description 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ion : Township of Amanth n : E: 556931, N: 4860324 (UTM 17T) : Elevation Datum : Geodetic te : EXCAVATOR SOIL PROFILE SAMPLES Ounconfined Oun	ion : Township of Amanth m : E: 55931, N: 4860324 (UTM 17T) le : EXCAVATOR SOIL PROFILE SOUR POFILE SOUR POFILE Bescription GROUND SURFACE CLAYEY SILT, some sand, some gravel, brown, moist (TOPSOIL)	ion : Township of Amara n : E: 556931, N: 4860324 (UTM 17T) e: EXCAVATOR	in r. township of Amarath Shet N in r. E. 558931, Nr. 4860324 (UTM 17): Elevation Datum r. Geodetic in r. E. ScavArtore SOLL PROFILE SAMPLES in r. E. ScavArtore Indianad Shear Strength (PP) Moisture / Plasticity Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strength (PP) Image: Second strength (PP) Description Image: Second strength (PP) Image: Second strengt (PP) <t< td=""><td>In Township of Amanth Shet No. in :: :</td><td>in : Township of Amanth Shet N. : 1 in : E: 556931, N: 4860324 (UTM 17T) Elevation Datum : Geodetic ie : EXCAVATOR Soll PROFILE SAMPLES im : Group SuffAcce 0 im : Group SuffAcce <</td></t<>	In Township of Amanth Shet No. in :: :	in : Township of Amanth Shet N. : 1 in : E: 556931, N: 4860324 (UTM 17T) Elevation Datum : Geodetic ie : EXCAVATOR Soll PROFILE SAMPLES im : Group SuffAcce 0 im : Group SuffAcce <

3.1 END OF TEST PIT

TEST PIT LOG 7

Lab Data

Project No. : 13-13-3198-6

Date excavated : January 24, 2014

Sheet No. : 1 of 1

Project : Waldemar Developments Location : Township of Amaranth

: Sarah Properties Ltd Developments

Positio	on :	E: 556922, N: 4860231 (UTM 17T)			Eleva	tion Dat	tum : Geodetic
Rig typ	be :	EXCAVATOR					
(m)		SOIL PROFILE		SAN	/ PLES	e	Undrained Shear Strength (kPa)
Depth Scale (n	Elev Depth (m)	Description	Graphic Log	Number	Type	Elevation Scale (m)	 Unconfined Pocket Penetrometer Field Vane Lab Vane
- 0.0		GROUND SURFACE				ш.	40 80 120 160
0.0		SANDY SILT trace clay, trace gravel	11/2				

Ê		SOIL PROFILE	-	SAN	/IPLES	e e		ained Sh		rength	(kPa)	N	loisture	/ Plast	icitv	0	Lab Data
Depth Scale (m)			b.	L_		Elevation Scale (m)		Unconfi								Headspace Vapour	Band Band Comments GRAIN SIZE DISTRIBUTION (%
Sce	Elev Depth	De a criatica	2	Number	Type	δÊ		Pocket Field Va		ometer		Plast Limit	Water	atural Content	Liquid Limit	dsp dg	Comments
pth	(m)	Description	hd		Tyl	vati)		Lab Va				F	PL I	MC	LL	sel s	GRAIN SIZE DISTRIBUTION (% (MIT)
			Graphic Log	2		<u>e</u>				0 40			0	0 20	30	±	
- 0.0		GROUND SURFACE SANDY SILT, trace clay, trace gravel,	<u>×1 /</u>			+	4	0 80	J 12	20 16	0	1	0	20	30		GR SA SI CL
		dark brown, moist															
		(TOPSOIL)	1/ 7	-													
-			NB														
			1/2														
					~~~												
F	0.4	CLAYEY SILT, some sand, some	11	1	GS												
-0.5	0.4	gravel, brown, damp	11			-											
0.0		gravel, brown, damp (GLACIAL TILL)	FF.	1													
F			[E]	1													
			ł.														
-			111	1													
-				1													
- 1.0			¥¥{	1													
-																	
				1													
-																	
			~~	1													
- 1.5				1													
				]													
F				1													
-																	
-			111	2	GS												
- 2.0						-											
-			- KA	1													
-																	
L			111														
			- KK	1													
-				1													
-25																	
[d6:s			FFF														
10 -			[E]E]	1													
- 1 es				1										1			
-0.19			F\$\$	ł													
42.5			EEE	1													
				1													
0 <b>116</b>																	
0.0 – 3.0			ÉÉÉ	1													
test	3.1	END OF TEST PIT															
e																	



# **TEST PIT LOG 8**

Project No. : 13-13-3198-6

:

Sheet No.

Date excavated : January 24, 2014

1 of 1

Project : Waldemar Developments Location : Township of Amaranth

: Sarah Properties Ltd Developments

 Position
 : E: 556958, N: 4860085 (UTM 17T)
 Elevation Datum
 : Geodetic

 Rig type
 : EXCAVATOR

Ê		SOIL PROFILE		SAN	<b>/</b> PLES	le	Undra	ined S	hear S	trength	(kPa)	м	loisture	/ Plastic	:itv		Lab Data
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	Elevation Scale (m)	● + ■	Unconf Pocket Field V Lab Va	Penetro 'ane ine	ometer 20 16	50	Plasti Limit	ic Nat Water PL N	Content	Liquid Limit LL 30	Headspace Vapour	Participation of the second se
- 0.0		CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)	<u>1' 7</u> 7 <u>7 7</u>							-0 1							
-			<u>\\</u> 1, \\ 7, \\	1	GS	-											
- 0.5 1.0 	0.3	CLAYEY SILT, some sand, some gravel, some cobbles, some boulders, brown, moist (GLACIAL TILL)															
- - 1.5 - -																	
- - 2.0 - - -				2	GS												
- 2.5 - - -  - 3.0																	



# **TEST PIT LOG 9**

Project No. : 13-13-3198-6

Date excavated : January 24, 2014

Sheet No. : 1 of 1

Project : Waldemar Developments Location : Township of Amaranth

: Sarah Properties Ltd Developments

SOIL PROFILE     SAMPLES     average     average<
CLAYEY SILT, some sand, trace gravel, dark brown, moist (TOPSOIL)
0.5     SANDY SILT, some clay, some gravel, some coubles, some boulders, brown, moist (GLACIAL TILL)
some cobbles, some boulders, brown, moist (GLACIAL TILL)
3.1 END OF TEST PIT Test pit was dry and open upon completion of excavation.



# **TEST PIT LOG 10**

Project No. : 13-13-3198-6

Date excavated : January 24, 2014

Sheet No. : 1 of 1

Project : Waldemar Developments

: Sarah Properties Ltd Developments

Location: Township of Amaranth

(u		SOIL PROFILE		SAN	<b>NPLES</b>	le	Und	Irained Shear Strength (kPa)	Moisture /	Plasticity		Lab Data
Depth Scale (m)	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	Elevation Scale (m)		<ul> <li>Unconfined</li> <li>Pocket Penetrometer</li> <li>Field Vane</li> <li>Lab Vane</li> <li>40 80 120 160</li> </ul>	Plastic Natu Limit Water C PL MU 1,0 20	ral Liquid ontent Limit	Headspace Vapour	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
0.0 - -		CLAYEY SILT, trace gravel, dark brown, moist (TOPSOIL)										
			<u>\\ 1</u> / 1/\	1	GS	_						
-0.5 - - - - - - - - - - - - - - - - - - -	0.5	SANDY SILT, some clay, some gravel, some cobbles, some boulders, brown, moist (GLACIAL TILL)		2	GS							
- 2.0 - - -												
- 2.5 - - - - 3.0												
0.0	3.1	END OF TEST PIT	<u>     </u>			]						



errapr				Slug Test - Water Le	evel Data Page
1 Inde Brampt	I Lane on, Ontario			Project: Waldemar [	Development
6T 3Y3				Number: 13-13-3198	
				Client: Sarah Prop	erties
ocatior	n: Waldemar, Ontr	aio	Slug Test: Slug Test	MW1D	Test Well: Well 1D
	nducted by: NA		Test Date: 7/3/2014		
_	evel at t=0 [m]: 12.	11	Static Water Level [n	า]: 1 32	Water level change at t=0 [m]: 11.12
	Time	Water Level	WL Change	ij. 1.52	
	[s] 10	[m] 12.43	[m] 11.11		
1 2	15	12.43	11.107		
3	20	12.425	11.105		
4	25	12.42	11.10		
5	30	12.418	11.098		
6	35	12.415	11.095		
7	40	12.41	11.09		
8	45	12.405	11.085		
9	55	12.40	11.08		
10	60	12.395	11.075	_	
11	65	12.391	11.071		
12 13	75 80	12.39 12.384	11.07 11.064	-	
14	85	12.384	11.064		
15	90	12.378	11.058	-	
16	95	12.372	11.052		
17	100	12.37	11.05		
18	105	12.366	11.046		
19	110	12.36	11.04		
20	120	12.355	11.035		
21	130	12.352	11.032		
22	140	12.348	11.028		
23 24	150 160	12.341 12.336	<u> </u>	_	
24	170	12.330	11.01	_	
26	180	12.33	11.005		
27	190	12.316	10.996	-	
28	200	12.311	10.991		
29	210	12.305	10.985		
30	220	12.30	10.98		
31	230	12.295	10.975		
32	240	12.286	10.966	_	
33	250	12.28	10.96	-	
34 35	260	12.276 12.271	10.956	-	
36	270	12.265	10.945		
37	290	12.203	10.941		
38	300	12.256	10,936		
39	315	12.245	10.925		
40	330	12.241	10.921		
41	345	12.234	10.914	_	
42	360	12.226	10.906	_	
43	375	12.22	10.90		(a)
44 45	390 405	12.212 12.204	10.892		
45	405	12.204	10.884	-	
40	480	12.17	10.85		
48	540	12.14	10.82		
49	600	12.115	10.795		
50	900	11.964	10.644		
51	1500	11.713	10.393		
52	1800	11.62	10.30		
53	3600	10.645	9,325		
54	7200	9.404	8.084		
55	10800	9.072	7.752		



Terrapr				Slug Test - Wa	iter Level Data	Page 1 o
l 1 Inde Brampt	l Lane con, Ontario			Project: Walde	emar Developments	
.6T 3Y				Number: 13-13	-3198	
				Client: Sarah	Properties	
.ocatior	n: Waldemar, Onta	rio	Slug Test: Slug Tes	t MW3S	Test Well: MW3S	
est Co	nducted by: NA		Test Date: 7/3/2014			
Vater le	ater level at t=0 [m]: 4.44		Static Water Level [	m]: 2.32	Water level change	e at t=0 [m]: 2.12
	Time	Water Level	WL Change			
1	[s] 5	[m] 4.42	[m] 2.10			
2	10	4.42	2.10			
3	15	4.42	2.09			
4	20	4.41	2.09			
5	30	4.405	2.085			
6	30	4.395	2.08			
	45		2.075			
7 8	45 50	4.39	2.07			
9	55	4.39	2.065			
10	60	4.385	2.065			
10	65	4.38	2.06			
11	70	4.38	2.06			
13	75	4.38	2.06			
13	80	4.38	2.06			
15	85	4.375	2.055			
16	90	4.375	2.055			
17	95	4.375	2.055			
18	100	4.37	2.05			
19	105	4.37	2.05			
20	110	4.37	2.05			
21	115	4.365	2.045			
22	120	4.365	2.045			
23	130	4.36	2.04			
24	150	4.362	2.042			
25	160	4.36	2.04	-		
26	170	4.359	2.039			
27	180	4.357	2.037			
28	190	4.356	2.036			
29	200	4.354	2.034			
30	220	4.348	2.028			
31	230	4.345	2.025			
32	240	4.345	2.025			
33	250	4.344	2.024			
34	260	4.344	2.024			
35	270	4.344	2.024			
36	280	4.343	2.023			
37	290	4.343	2.023			
38	300	4.343	2.023			
39	315	4.34	2.02			
40	330	4.34	2.02			
41 42	345 360	4.337	2.017			
42	360 375	4.336	2.016			
43	375 390	4.335	2.015			
44	405	4.335	2.015			
40	405	4.335	2.015			
40	480	4.335	2.015			
47	540	4.333	2.013			
40	600	4.333	2.014			
50	900	4.327	2.013			
51	1200	4.324	2.004			
52	1500	4.32	2.004			
53	1800	4.319	1.999	_		
54	4800	4.31	1.99			
55	7800	4.305	1.985			
56	11160	4.30	1.98			



Terrapi				Slug Test - Water L	evel Data	Page 1 o
Bramp	el Lane ton, Ontario			Project: Waldemar	Development	
-6T 3Y	3			Number: 13-13-3198	8	
				Client: Sarah Prop	perties	
ocatio	n: Waldemar, Onta	rio	Slug Test: Slug Test	: MW6	Test Well: MW6	
Fest Co	onducted by: NA		Test Date: 7/3/2014			
Nater l	evel at t=0 [m]: 4.3	4	Static Water Level [r	m]: 1.93	Water level change	e at t=0 [m]: 2.41
	Time	Water Level	WL Change			
1	[s] 10	[m] 4.28	[m] 2.35			
2	15	4.25	2.32			
3	20	4.23	2.30			
4	25	4.21	2.28			
5	30	4.19	2.26			
6	35	4.17	2.24			
7	40	4.155	2.225			
8	45	4.13	2.20			
9	50	4,123	2.193			
10	55	4.11	2.18			
11	65	4.10	2.17			
12	70	4.075	2.145			
13	80	4.056	2.126			
14	85	4.04	2.11			
15 16	100	4.025	2.095			
10	105 110	3.99	2.07			
18	120	3.99	2.05			
19	130	3.965	2.035			
20	140	3.95	2.02			
21	150	3.935	2.005			
22	160	3.926	1.996			
23	170	3.905	1.975			
24	180	3.892	1.962			
25	190	3.88	1.95			
26	200	3.87	1.94			
27	210	3.856	1.926			
28	220	3.845	1.915			
29 30	230 240	3.853 3.823	<u> </u>			
31	240	3.81	1.88			
32	260	3.803	1.873	-		
33	270	3.794	1.864			
34	280	3.784	1.854			
35	290	3.775	1.845			
36	300	3.765	1.835			
37	315	3.753	1.823			
38	330	3.74	1.81			
39	345	3.73	1.80			
40	360	3.718	1.788			
41	375	3.71 3.698	1.78			
42	390 405	3.698	1.755			
43	403	3.676	1.755			
45	480	3.63	1.740			
46	540	3.59	1.66			
47	600	3.545	1.615			
48	900	3.42	1.49			
49	1200	3.31	1.38			
50	1800	3.15	1.22			
51	3900	3.222	1.292			
52	4800	2.90	0.97			
53	8220	2.79	0.86			
54	10800	2.72	0.79	1		



Terrapr				Slug Test - Water Level Data Page 1 of 1			
11 Inde	l Lane :on, Ontario			Project: Walden	nar Developments		
L6T 3Y				Number: 13-13-3198			
	n: Waldemar, Onta	ario	Slug Test: Slug Te		Test Well: MW8		
Test Co	nducted by: NA		Test Date: 7/3/20	14			
Water le	evel at t=0 [m]: 6.2	2	Static Water Leve	l [m]: 2.17	Water level change a	at t=0 [m]: 4.05	
	Time [s]	Water Level [m]	WL Change [m]				
1	5	6.215	4.045				
2	10	6.21	4.04				
3	15	6.206	4.036				
4	20	6.204	4.034				
5	35 40	6.199 6.198	4.029				
7	50	6.195	4.025				
8	55	6.195	4.025				
9	65	6.193	4.023				
10	75	6.191	4.021				
11	80	6.19	4.02				
12 13	85 90	6.189 6.189	4.019				
13	95	6.189	4.019				
15	105	6.187	4.017				
16	110	6.186	4.016				
17	115	6,185	4.015				
18	120	6.184	4.014				
19	130	60183.00	60180.83				
20	140 150	6.182 6.18	4.012				
21	160	6.18	4.01				
23	170	6.179	4.009				
24	180	6.179	4.009				
25	190	6.178	4.008				
26	200	6.177	4.007				
27 28	210 220	6.176 6.175	4.006				
20	230	6.175	4.005				
30	240	6.175	4.005				
31	250	6.174	4.004				
32	260	6.174	4.004				
33	270	6.173	4.003				
34 35	280	6.173 6.173	4.003				
35	300	6.173	4.003				
37	315	6.172	4.002				
38	330	6.17	4.00				
39	345	6.17	4.00				
40	360	6.17	4.00				
41	375 390	6.17 6.169	4.00				
42	405	6.169	3.999				
44	420	6.168	3.998				
45	480	6.166	3.996				
46	540	6.164	3.994				
47	600	6.163	3.993				
48	900	6.159	3.989				
49 50	1200 1500	6.154 6.149	3.984				
51	1800	6.149	3.979				
52	3600	6.13	3.96				
53	7200	6.095	3.925				
54	10800	6.06	3.89				



Ferrapr				Slug Test - Wa	ter Level Data	Page 1 d	
1 Indel Brampt	l Lane on, Ontario			Project: Walde	mar Development		
.6T 3Y3				Number: 13-13-3198			
				Client: Sarah	Properties		
ocation	n: Waldermar, Ont	ario	Slug Test: Slug Test	: MW9	Test Well: MW9		
Test Co	nducted by: NA		Test Date: 7/3/2014				
Vater le	evel at t=0 [m]: 4.6	8	Static Water Level [	n]: 1.51	Water level change	e at t=0 [m]: 3.17	
	Time [s]	Water Level	WL Change [m]				
1	5	[m] 4.68	3.17				
2	10	4.676	3.166				
3	15	4.674	3.164				
4	20	4.672	3,162				
5	25	4.67	3.16				
6	30	4.669	3.159				
7	40	4.665	3.155				
8	45	4.663	3.153				
9	50	4.661	3.151				
10	60	4.66	3.15				
11	65	4,66	3.15				
12	70	4.659	3.149				
13	75	4.657	3.147				
14	85	4.656	3.146				
15	90	4,655	3.145				
16	95	4.655	3.145				
17	100	4.655	3.145				
18	105	4.654	3.144				
19	115	4.654	3.144				
20	120	4.653	3.143				
21	130	4.651	3.141				
22	140	4.65	3.14				
23	150	4.649	3.139				
24	160	4,649	3.139				
25	170	4.649	3.139				
26	180	4.648	3.138				
27	190	4.647	3.137				
28	200	4,647	3.137				
29	210	4.646	3.136				
30 31	220	4.645	3.135				
31	230	4.644	3.134				
33	250	4.643	3.133				
34	260	4.643	3.133				
35	200	4.642	3.132				
36	280	4.641	3,131				
37	290	4.64	3.13	-			
38	300	4,64	3,13				
39	315	4.64	3.13				
40	330	4.639	3.129				
41	345	4.638	3.128				
42	360	4.638	3.128				
43	375	4.637	3.127				
44	390	4.636	3.126				
45	405	4,635	3,125				
46	420	4.635	3.125				
47	480	4,634	3,124				
48	540	4.633	3.123				
49	600	4.631	3,121				
50	900	4.625	3.115				
51	1200	4.621	3.111				
52	1500	4.615	3.105				
53	1800	4.611	3,101				
54	3300	4.53	3.02				
55	7200	4.53	3.02	_			
56	10800	4.468	2,958				



Terrap				Slug Test - Water L	evel Data Page 1 of
	el Lane Iton, Ontario			Project: Waldemar	Developments
L6T 3Y				Number: 13-13-3198	3
				Client: Sarah Prop	perties
Locatio	on: Waldemar, Onta	urio	Slug Test: Slug Test	· · · · ·	Test Well: MW11D
			Test Date: 7/3/2014		
	onducted by: NA		r		
Water I	level at t=0 [m]: 7.3		Static Water Level [r	n]: 5.62	Water level change at t=0 [m]: 1.76
	Time [s]	Water Level [m]	WL Change [m]		
1	10	12.99	7.37		
2	15	12.985	7.365		
3	20 25	12.98 12.975	7.355		
5	30	12.975	7.355		
6	35	12,974	7.354		
7	40	12.973	7.353		
8	45	12.971	7.351		
9	50	12.97	7.35		
10 11	55 60	12.969 12.968	7.349		
11	60	12.968	7.348		
13	70	12.965	7.344		
14	75	12.963	7.343		
15	80	12.962	7.342		
16	85	12.96	7.34		
17	90	12.96	7.34		
18 19	95 100	12.959 12.958	7,339		
20	105	12.958	7.338		
21	110	12.957	7.337		
22	115	12.956	7.336		
23	120	12.955	7.335		
24	130	12.954	7.334		
25	140	12.953	7.333		
26 27	150 160	12.951 12.949	7.331		
28	170	12.945	7.327		
29	180	12.946	7.326		
30	190	12.945	7.325		
31	200	12.944	7.324		
32	210	12.942	7.322		
33 34	220 230	12.941 12.94	7.321	-	
34	230	12.94	7.32	-	
36	250	12.935	7.315		
37	260	12.935	7.315		
38	270	12.934	7.314		
39	280	12.933	7.313		
40	290 300	12.933 12.931	7.313		
41	300	12.931	7.311		
43	330	12.925	7.307	-	
44	345	12.925	7.305		
45	360	12.923	7.303		
46	375	12.92	7.30		
47	390	12.919	7.299	_	
48 49	405 420	12.915 12.915	7.295		
49 50	480	12.915	7.295		
51	540	12.907	7.28		
52	600	12.895	7.275		
53	900	12.865	7.245		
54	1200	12.828	7.208		
55	1500	12.794	7.174	_	
56	1800	12.758	7.138	_	
57	3600	12.53	6.91		

errapr	obe			Slug Te	st - Water Level Data	Page 2 of	
	l Lane on, Ontario			Project:	Project: Waldemar Developments		
6T 3Y3	3			Number	: 13-13-3198		
				Client:	Sarah Properties		
	Time	Water Level	WL Change	-l-r	•		
	[S]	[m]	[m}				
58 59	7200	12.14	6.52				
-09	10800	11.76	6.14				



errap				Slug Test - Wa	ter Level Data	Page 1 d	
	el Lane ton, Ontario			Project: Waldemar Developments			
.6T 3Y				Number: 13-13	-3198		
				Client: Sarah	Properties		
ocatio	n: Waldemar, Onta	rio	Slug Test: Slug Tes	t MW12	Test Well: MW12		
est Co	onducted by: NA		Test Date: 7/3/2014				
Vater I	evel at t=0 [m]: 4.70	)	Static Water Level [	m]: 2.48	Water level change	e at t=0 [m]: 2.22	
	Time	Water Level	WL Change				
1	[s] 10	[m] 4,69	[m] 2.21				
2	25	4.68	2.20				
3	30	4.68	2.20				
4	35	4.68	2.20				
5	40	4.678	2.198				
6	45	4.675	2,195				
7	50	4.67	2.19				
8	55	4.67	2,19				
9	60	4.668	2.188				
10	65	4.665	2.185				
11	70	4.662	2.182				
12 13	75 80	4.66	2.18				
13	85	4.658 4.655	2.178				
14	90	4.655	2.175				
16	95	4.654	2.174	-			
17	100	4.652	2.172				
18	105	4,65	2.17				
19	115	4.648	2.168				
20	120	4.645	2.165				
21	130	4,642	2.162				
22	140	4.64	2.16				
23	150	4,639	2.159				
24	160	4.637	2.157				
25 26	170 180	4,635	2.155				
20	190	4.63	2.15				
28	200	4.625	2.145				
29	210	4.62	2,14				
30	220	4.618	2.138				
31	230	4.613	2,133				
32	240	4.61	2.13				
33	250	4.609	2,129				
34	260	4.604	2.124				
35	270	4.602	2,122				
36	280	4.60	2.12				
37 38	290 300	4.598 4.595	2.118				
39	315	4.595	2.115				
40	330	4.588	2.108	I			
41	345	4.585	2.105				
42	360	4.58	2,10				
43	375	4.577	2.097				
44	390	4.575	2.095				
45	405	4.57	2.09				
46	420	4.566	2.086	r			
47	480	4.555	2.075				
48 49	540 600	4.535	2.055				
50	900	4.52	1.972				
50	1200	4.452	1.972				
52	1500	4.393	1.84				
53	1800	4.26	1.78				
54	4980	3.78	1.30				
55	7200	3.59	1.11				
56	10800	3.46	0.98				



<b>Ferrapr</b>				Slug Test - Wa	ter Level Data	Page 1 o		
1 Indel	Lane on, Ontario			Project: Waldemar Developments Number: 13-13-3198				
_6T 3Y3								
				Client: Sarah Properties				
ocation	: Waldemar, Onta	rio	Slug Test: Slug Test	: MW16	Test Well: MW16			
Fest Cor	nducted by: NA		Test Date: 7/3/2014					
Nater le	vel at t=0 [m]: 4.6	2	Static Water Level [r	ກ]: 2.22	Water level change	at t=0 [m]: 2.40		
	Time	Water Level	WL Change	-				
1	[s] 1	[m] 4.62	[m] 2.40					
2	5	4.62	2.398					
3	10	4.615	2.395					
4	15	4.614	2.394					
5	20	4.613	2.393					
6	25	4.61	2.39					
7	30	4.61	2.39					
8	35	4.609	2.389	8				
9 10	40 45	4.608	2.388	_				
11	50	4.607	2.387					
12	55	4.604	2.384					
13	60	4.603	2.383					
14	65	4.601	2.381					
15	70	4.60	2.38					
16	75	4.60	2.38					
17	80	4.599	2.379					
18 19	85 90	4.599	2.379					
20	95	4.596	2.376					
21	100	4.595	2.375					
22	105	4.595	2.375					
23	110	4.594	2.374					
24	115	4.594	2.374					
25	120	4.594	2.374					
26 27	130 140	4.593	2.373					
28	150	4.592	2.372					
29	160	4.59	2.37	-				
30	170	4.589	2.369					
31	180	4.589	2.369					
32	190	4.588	2.368					
33	200	4.587	2.367					
34 35	210 220	4.587	2.367					
35	220	4.586	2.366					
37	240	4.585	2.365	-				
38	250	4.585	2.365					
39	260	4.584	2.364					
40	270	4.584	2.364					
41	280	4.584	2,364					
42	290 300	4.583 4.583	2.363					
43	315	4.583	2.363					
45	330	4.581	2.361	-				
46	345	4.58	2.36					
47	360	4.58	2.36					
48	375	4.579	2.359					
49	390	4.578	2.358	_				
50 51	405	4.577	2.357	_				
51	420 480	4.576	2.356					
53	540	4.574	2.354	-				
54	600	4.57	2.35					
55	900	4.564	2.344					
56	1200	4.556	2.336					
57	1500	4.551	2.331					

### Terraprobe 11 Indel Lane Brampton, Ontario L6T 3Y3

# Slug Test - Water Level Data

Project: Waldemar Developments

Number: 13-13-3198

Client: Sarah Properties

	Time [s]	Water Level [m]	WL Change [m]
58	1800	4.548	2.328
59	3600	4.52	2.30
60	7200	4.475	2.255
61	10800	4.43	2.21





Water Balance - Waldemar Developm	nent		File No. 13-13-3198
1. Climate Information			
Precipitation Evapotranspiration Water Surplus	860 mm/a <u>530</u> mm/a 330 mm/a		
2. Infiltration Rates			
Table 2 Approach - Infiltration Factors Rolling land Medium combinations of clay and sand loam Cultivated lands TOTAL Infiltration (0.5 x 330)	0.2 0.2 <u>0.1</u> 0.5 165 mm/a		
Run-off (330-165)	165 mm/a		
<i>Table 3 Approach - Typical Recharge Rates</i> silty sand to sandy silt silt clayey silt	150 - 200 mm/a 125 - 150 mm/a 100 - 125 mm/a		
Based on the above, the i	recharge rate is 165 m with runoff of 165 m		
3. Property Statistics			
Building Area Paved Areas (streets, sidewalks & driveways) Permeable Areas (open speaces, landscaped areas, parks)	89,283 m ² 64,809 m ² 196,116	8.9 ha 6.5 ha 19.6 ha	
TOTAL	350,208 m ²	35.0 ha	

# Water Balance

### File No. 13-13-3198

### 5. Annual Pre-Development Water Balance

Land Use	Area (m ² )	Precipitation (m ³ )	Evapotranspiration (m ³ )	Infiltration (m ³ )	Run-Off (m ³ )
Undeveloped	350,208	301,179	185,610	57,784	57,784

# 6. Annual Post-Development Water Balance-Unmitigated

Land Use	Area (m ² )	Precipitation (m ³ )	Evapotranspiration (m ³ )	Infiltration (m ³ )	Run-Off (m ³ )
Landscaped Areas	196,116	168,660	103,941	32,359	32,359
and Open Spaces					
Paved Areas (streets,	64,809	55,736	5,574	nil	50,162
sidewalks, walkways, drive	eways)				
Building Area	89,283	76,783	nil	nil	76,783
Roofs					
TOTAL	350,208	301,179	109,515	32,359	159,305

## 7. Comparison of Pre-Development and Post-Development

	Precipitation (m ³ )	Evapotranspiration (m ³ )	Infiltration (m ³ )	Run-Off (m ³ )
Pre-Development	301,179	185,610	57,784	57,784
Post-Development	301,179	109,515	32,359	159,305

# 8. Requirement for Infiltration of Roof Runoff

Volume of roof run-off available	76,783 m ³
Volume of post-development infiltration without roof run-off	32,359 m ³
Volume of roof run-off required to match pre-development infiltration rates	25,425 m ³
Percentage of roof run-off required to match pre-development infiltration	33%

# 9. Annual Post-Development Water Balance-Mitigated

Land Use	Area (m ² )	Precipitation (m ³ )	Evapotranspiration (m ³ )	Infiltration (m ³ )	Run-Off (m ³ )
Landscaped Areas and Open Spaces	196,116	168,660	103,941	32,359	32,359
Paved Areas (streets,	64,809	55,736	5,574	nil	50,162
sidewalks/walkways/drivev					
Building Area	89,283	76,783	nil	25,425	51,358
Roofs					
TOTAL	350,208	301,179	109,515	57,784	133,880



Maxxam

Your Project #: 13-13-3198 Your C.O.C. #: 47562101, 475621-01-01

Attention:Ryan Smith

Terraprobe 11 Indell Lane Brampton, ON L6T 3Y3

> Report Date: 2014/07/09 Report #: R3082994 Version: 1

### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B4B5966 Received: 2014/07/04, 12:40

Sample Matrix: Water # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Ammonia-N	9	N/A	2014/07/08	CAM SOP-00441	US GS I-2522-90
Nitrate (NO3) and Nitrite (NO2) in Water (1)	9	N/A	2014/07/07	CAM SOP-00440	SM 4500 NO3I/NO2B
Total Kjeldahl Nitrogen in Water	9	2014/07/08	2014/07/08	CAM SOP-00454	EPA 351.2 Rev 2

#### Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Rickey Samaroo, Customer Service Email: rSamaroo@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 7



Terraprobe Client Project #: 13-13-3198

### **RESULTS OF ANALYSES OF WATER**

Maxxam ID		$\rightarrow$	WO1031			WO1032			VO1033			NO1034			
Sampling Date			2014/07/0			2014/07/04			14/07/04		_	14/07/04			
COC Number			475621-01-			75621-01-01			621-01-01		475	621-01-01			
	U	nits	MW1D		RDL	MW3S	RDL		MW6	RDL		MW8	RDL	QC	Batch
Inorganics															
Total Ammonia-N	m	ng/L	0.12	(	0.050	<0.050	0.050		0.053	0.050	)	<0.050	0.050	366	56213
Total Kjeldahl Nitrogen (TK	(N) m	ng/L	3.9		1.0	0.41	0.20		19	10		3.1	2.0	366	57213
Nitrite (N)	m	ng/L	<0.010	(	0.010	<0.010	0.010		<0.010	0.010	)	<0.010	0.010	366	65255
Nitrate (N)	m	ng/L	<0.10		0.10	0.14	0.10		0.32	0.10		2.67	0.10	366	65255
Nitrate + Nitrite	m	ng/L	<0.10		0.10	0.14	0.10		0.32	0.10		2.67	0.10	366	65255
RDL = Reportable Detectio QC Batch = Quality Control															
QC Batch = Quality Control		W	/01035		/01036	WO103	-		W0103			WO103	-		
QC Batch = Quality Control xxam ID npling Date		W 201	4/07/04	201	14/07/04	4 2014/07/	′04		2014/07/	04		2014/07/	/04		
QC Batch = Quality Control		W 201	4/07/04	201		4 2014/07/ 01 475621-01	′04 L-01			04			/04		
QC Batch = Quality Control xxam ID npling Date		W 201 4756	4/07/04	201 4756	14/07/04	4 2014/07/	/04 L-01 <b>D</b>	RDL	2014/07/	04	RDL	2014/07/	/04 L-01	RDL	QC Ba
QC Batch = Quality Control xxam ID npling Date	l Batch	W 201 4756	14/07/04 521-01-01	201 4756	14/07/04 621-01-(	4 2014/07/ 01 475621-01 MW11	/04 L-01 <b>D</b>		2014/07/ 475621-01	04	RDL	2014/07/ 475621-01	/04 L-01	RDL	QC Ba
QC Batch = Quality Control xxam ID npling Date C Number	l Batch	W 201 4756	14/07/04 521-01-01	201 4756 M	14/07/04 621-01-(	4 2014/07/ 01 475621-01 MW11	/04 L-01 D F		2014/07/ 475621-01	04 -01	<b>RDL</b>	2014/07/ 475621-01	/04 L-01	<b>RDL</b>	-
QC Batch = Quality Control xxam ID npling Date C Number rganics	Units	W 201 4756	14/07/04 521-01-01 MW9	201 4756 M	14/07/04 621-01-0 <b>/W11D</b>	4 2014/07/ 01 475621-01 MW11	/04 L-01 <b>D</b> <b>F</b> 0.	RDL	2014/07/ 475621-01 MW12	04 -01 I		2014/07/ 475621-01 MW16	(04 L-01 5 I		36662
QC Batch = Quality Control xxam ID ppling Date C Number rganics al Ammonia-N	l Batch Units mg/L	W 201 4756	14/07/04 521-01-01 <b>MW9</b> <0.050	201 4756 M	14/07/04 621-01-0 <b>1W11D</b> 0.12	4 2014/07/ 01 475621-01 MW11	(04 1-01 <b>p</b> 0.	<b>RDL</b> .050	2014/07/ 475621-01 MW12 <0.050	04 -01 I 0 1)	.050	2014/07/ 475621-01 MW16 <0.050	/04 I-01 6 I	.050	36662 36672
QC Batch = Quality Control xxam ID npling Date C Number rganics al Ammonia-N al Kjeldahl Nitrogen (TKN)	Units	W 201 4756	4/07/04 521-01-01 <b>MW9</b> c0.050 1.6	201 4756 M	14/07/04 621-01-0 1W11D 0.12 1.0	4 2014/07/ 01 475621-01 MW111 Lab-Du	(04 1-01 <b>D</b> <b>p</b> <b>F</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b>	<b>RDL</b> .050 1.0	2014/07/ 475621-01 MW12 <0.050 <2.0 (1	04 -01 I 0 1) 0	0.050 2.0	2014/07/ 475621-01 <b>MW16</b> <0.050 12	(04 1-01 5 1 0 0 0 0	.050 10	

Nitrate + Nitrite RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Units	2014/07/04 475621-01-01 DUP1		
Units			
Units	DUP1		
	50.1	RDL	QC Batch
mg/L	0.062	0.050	3666213
mg/L	<10 (1)	10	3667213
mg/L	<0.010	0.010	3665255
mg/L	0.33	0.10	3665255
mg/L	0.33	0.10	3665255
1	mg/L mg/L mg/L	mg/L         <10 (1)	mg/L         <10 (1)         10           mg/L         <0.010

QC Batch = Quality Control Batch

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.



#### Terraprobe Client Project #: 13-13-3198

### **TEST SUMMARY**

Maxxam ID: Sample ID: Matrix:	WO1031 MW1D Water					Collected: 2014/07/04 Shipped: Received: 2014/07/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N		LACH/NH4	3666213	N/A	2014/07/08	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (	(NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai
Total Kjeldahl Nitrogen in	Water	AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina
Maxxam ID: Sample ID: Matrix:	WO1032 MW3S Water					Collected: 2014/07/04 Shipped: Received: 2014/07/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N		LACH/NH4	3666213	N/A	2014/07/08	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (	(NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai
Total Kjeldahl Nitrogen in	Water	AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina
Sample ID:	WO1033 MW6 Water					Collected: 2014/07/04 Shipped: Received: 2014/07/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N		LACH/NH4	3666213	N/A	2014/07/08	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (	(NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai
Total Kjeldahl Nitrogen in	Water	AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina
Maxxam ID: Sample ID: Matrix:	WO1034 MW8 Water					Collected: 2014/07/04 Shipped: Received: 2014/07/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N		LACH/NH4	3666213	N/A	2014/07/08	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (	(NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai
Total Kjeldahl Nitrogen in		AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina
Maxxam ID: Sample ID: Matrix:	MW9					Collected: 2014/07/04 Shipped: Received: 2014/07/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N		LACH/NH4	3666213	N/A	2014/07/08	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (	(NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai
Total Kjeldahl Nitrogen in	Water	AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina
Maxxam ID: Sample ID: Matrix:	WO1036 MW11D Water					Collected: 2014/07/04 Shipped: Received: 2014/07/04
				Future et e el	Data Analyzad	Analyst
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Test Description Total Ammonia-N		Instrumentation LACH/NH4	Batch 3666213	N/A	2014/07/08	Charles Opoku-Ware

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca



Terraprobe Client Project #: 13-13-3198

### **TEST SUMMARY**

Maxxam ID: WO1036 Sample ID: MW11D Matrix: Water					Shipped:	2014/07/04 2014/07/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Kjeldahl Nitrogen in Water	AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina	3
Maxxam ID: WO1036 Dup Sample ID: MW11D Matrix: Water					Shipped:	2014/07/04 2014/07/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai	
Maxxam ID: WO1037 Sample ID: MW12 Matrix: Water					Shipped:	2014/07/04 2014/07/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Ammonia-N	LACH/NH4	3666213	N/A	2014/07/08	Charles Opol	u-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai	
Total Kjeldahl Nitrogen in Water	AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina	3
Maxxam ID: WO1038 Sample ID: MW16 Matrix: Water					Shipped:	2014/07/04 2014/07/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Ammonia-N	LACH/NH4	3666213	N/A	2014/07/08	Charles Opol	u-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai	
Total Kjeldahl Nitrogen in Water	AC	3667213	2014/07/08	2014/07/08	Sarabjit Raina	3
Maxxam ID: WO1039 Sample ID: DUP1 Matrix: Water					Shipped:	2014/07/04 2014/07/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Ammonia-N	LACH/NH4	3666213	N/A	2014/07/08	Charles Opok	u-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	3665255	N/A	2014/07/07	Surinder Rai	
	AC					



Maxxam Job #: B4B5966 Report Date: 2014/07/09 Success Through Science®

Terraprobe Client Project #: 13-13-3198

### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.0°C

Results relate only to the items tested.



Maxxam Job #: B4B5966 Report Date: 2014/07/09 Terraprobe Client Project #: 13-13-3198

### **QUALITY ASSURANCE REPORT**

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3665255	SAU	Matrix Spike	Nitrite (N)	2014/07/07		105	%	80 - 120
		[WO1036-01]						
			Nitrate (N)	2014/07/07		114	%	80 - 120
3665255	SAU	Spiked Blank	Nitrite (N)	2014/07/07		100	%	80 - 120
			Nitrate (N)	2014/07/07		112	%	80 - 120
3665255	SAU	Method Blank	Nitrite (N)	2014/07/07	<0.010		mg/L	
			Nitrate (N)	2014/07/07	<0.10		mg/L	
3665255	SAU	RPD [WO1036-01]	Nitrite (N)	2014/07/07	NC		%	25
			Nitrate (N)	2014/07/07	NC		%	25
3666213	СОР	Matrix Spike	Total Ammonia-N	2014/07/08		97	%	80 - 120
3666213	COP	Spiked Blank	Total Ammonia-N	2014/07/08		98	%	85 - 115
3666213	СОР	Method Blank	Total Ammonia-N	2014/07/08	<0.050		mg/L	
3667213	SNR	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2014/07/08		NC	%	80 - 120
3667213	SNR	QC Standard	Total Kjeldahl Nitrogen (TKN)	2014/07/08		93	%	80 - 120
3667213	SNR	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2014/07/08		83	%	80 - 120
3667213	SNR	Method Blank	Total Kjeldahl Nitrogen (TKN)	2014/07/08	0.13,		mg/L	
					RDL=0.10			

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



Report Date: 2014/07/09

Terraprobe Client Project #: 13-13-3198

### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



#### TABLE 1

#### Ground Water Elevations Wademar Developments

	5-Jun-14		6-Jun-14		3-Jul-14		23-Oct-14	
Well ID	Grouond Water Level m(bgs)	Ground Water Elevation (masl)	Grouond Water Level m(bgs)	Ground Water Elevation (masl)	Grouond Water Level m(bgs)	Ground Water Elevation (masl)	Grouond Water Level m(bgs)	Ground Water Elevation (masl)
MW 1D	NV	NV	10.98	463.22	1.32	472.88	3.08	471.12
MW 1S	1.02	473.18	3.78	470.42	1.48	472.72	1	473.2
MW 2	1.5	469.3	5.6	465.2	3.35	467.45	1.88	468.92
MW 3D	5.43	464.67	5.63	464.47	8.23	461.87	7.14	462.96
MW 3S	1.62	468.48	3.26	466.84	2.32	467.78	1.06	469.04
MW 4	4.28	466.1	5.45	464.93	4.91	465.47	4.81	465.57
MW 5D	5.77	462.73	5.78	462.72	6.01	462.49	6.21	462.29
MW 5S	4.61	463.89	4.67	463.83	4.67	463.83	4.69	463.81
MW 6	1.12	465.58	2.43	464.27	1.93	464.77	NV	NV
MW 7	1.48	471.32	4.89	467.91	1.83	470.97	1.39	471.41
MW 8	1.64	467.36	5.69	463.31	2.17	466.83	1.55	467.45
MW 9	1.12	464.88	3.37	462.63	1.51	464.49	1.3	464.7
MW 10	2.15	467.45	3.58	466.02	2.59	467.01	3.56	466.04
MW 11D	5.33	462.97	7.19	461.11	5.62	462.68	6.29	462.01
MW 11S	4.73	463.57	4.85	463.45	4.84	463.46	DRY	DRY
MW 12	1.93	464.27	1.99	464.21	2.48	463.72	3.33	462.87
MW 13	2.83	459.97	2.95	459.85	3.26	459.54	3.64	459.16
MW 14	1.73	461.47	1.96	461.24	2.33	460.87	4.35	458.85
MW 15D	6.2	464.2	11.49	458.91	7.14	463.26	7.96	462.44
MW 15S	1.07	469.33	4	466.4	2.2	468.2	2.26	468.14
MW 16	1.54	463.91	3.47	461.98	2.22	463.23	1.91	463.54
MW 17	1.68	466.07	3.65	464.1	2.23	465.52	2.71	465.04
MW 18	1.71	461.79	3.06	460.44	2.1	461.4	1.25	462.25

NV - No value